News
Tesla Model 3 named as vehicle with ‘lowest probability of injury’ by the NHTSA
The National Highway Traffic Safety Administration (NHTSA) has dubbed the Long Range RWD Tesla Model 3 as the vehicle with the lowest probability of injury among all cars that the agency has tested so far. The Model 3’s low likelihood of injury rating was given after the vehicle went through the NHTSA’s New Car Assessment Program, which involves a series of crash tests determining the likelihood of serious passenger injury for front, side, and rollover crashes.
The Model 3’s stellar rating from the NHTSA could be seen as yet another testament to the quality of Tesla’s all-electric cars. Immediately following the Model 3’s scores, after all, are the Model S and Model X, which are currently the vehicles considered by the NHTSA with the second and third lowest probabilities of injury. In a blog post announcing the electric sedan’s safety ratings, Tesla noted that it expects the Dual Motor AWD Model 3 to perform just as well in the NHTSA’s tests as its Long Range RWD sibling.
Part of the reason why the Model 3 is so safe is due to the vehicle’s all-electric design. Tesla opted to place the Model 3’s battery pack, the heaviest component of the vehicle, right at the car’s center of gravity. This gives the Model 3 performance and handling that is almost similar to that of mid-engine vehicles, while allowing the electric sedan to have a near 50/50 weight distribution. Other subtle design tweaks, such as the rear motor being placed slightly in front of the axle, further improve the Model 3’s weight distribution, as well as its overall agility and handling.
Model 3 provides superior safety with its front crumple zone which is optimized to absorb energy and crush upon impact https://t.co/RJEn0LlVNi pic.twitter.com/foF7CXPCc0
— Tesla (@Tesla) October 8, 2018
In true Tesla tradition, the Model 3’s all-electric architecture comprises of a sturdy, rigid passenger compartment, a fortified battery pack, and a low center of gravity. Just like its larger siblings, the Model S and X, the absence of an internal combustion engine in front and a fuel tank at the rear give the Model 3 extra large crumple zones, which are optimized to absorb energy and crush more efficiently in the event of an accident.
In the event of a frontal crash, the crumple zone at the front of the vehicle controls the deceleration of occupants, while the Model 3’s advanced restraint systems keep occupants safe in place. Passenger airbags are even specially designed to protect an occupant’s head in the event of an angled or offset crash, while active vents enable the vehicle to adjust the internal pressure of the frontal airbags when deploying. These systems optimize protection based on the specifics of an accident.
The Model 3’s energy-absorbing lateral and diagonal beam structures help occupants safe during pole impact crashes. These structures include a high-strength aluminum bumper beam, a sway bar placed close and forward in front of the car, cross members are the front of the steel subframe that are connected to the main crash fails, as well as diagonal beams in the subframe that distribute energy back to the crash rails when they are not directly impacted. An ultra-high-strength martensitic steel beam is further fitted on the front of the suspension to absorb crash energy from severe impacts.

Tesla also designed the Model 3 with a patented pillar structure and side sills to absorb as much energy as possible in a short distance. Coupled with the vehicle’s rigid body construction and fortified battery architecture, these design elements enable the Model 3 to reduce and prevent compartment intrusion in the event of an accident, while allowing its side airbags to have more space to inflate and cushion occupants.
Just like the Model S and Model X, the Model 3’s low center of gravity plays a key role in keeping the vehicle safe from rollover crashes. That said, even if a rollover does occur, Tesla notes that internal tests have shown that the Model 3 is capable of withstanding roof-crush loads equivalent to more than four times the electric sedan’s weight, far more than the NHTSA’s standards that require cars to withstand three times their own weight.
.@NHTSAgov will post final safety probability stats soon. Model 3 has a shot at being safest car ever tested.
— Elon Musk (@elonmusk) September 20, 2018
The Model 3 was recently given a flawless 5-Star Safety Rating in all categories and subcategories by the NHTSA. In a follow-up tweet to the NHTSA’s Model 3 results, Elon Musk noted on Twitter that the electric sedan has a shot at being the “safest car ever tested” by the agency. With the Model 3 being dubbed as the vehicle with the lowest probability of injury by the NHTSA, it appears that Musk’s statement has proven to be accurate.
Model 3 has the lowest intrusion from side pole impact of any vehicle tested by @NHTSAgov https://t.co/RJEn0LlVNi pic.twitter.com/ZvGCC82rEX
— Tesla (@Tesla) October 8, 2018
It’s not just the NHTSA that has given the Model 3 its approval, either. Earlier this year, the Insurance Institute for Highway Safety (IIHS), a nonprofit funded by auto insurers aimed at reducing accidents on the road, gave the Model 3 a “Superior” front crash avoidance rating. During the course of its testing, the Model 3 performed well in the crash avoidance and mitigation category, thanks to the vehicle’s Forward Collision Warning, its low-speed autobrake, and its high-speed autobrake systems. The Model 3 was also given a “Recommended” rating by Consumer Reports, after an over-the-air software update reduced the vehicle’s braking distance.
Tesla’s electric cars are known for their performance and their safety. The Model X, for one, also received 5-Star Safety Ratings in all categories and subcategories during the NHTSA’s tests. The Model S, on the other hand, performed so well during the NHTSA’s safety evaluation that the agency’s crash-testing gear broke while it was testing the electric sedan.
Elon Musk
Tesla CEO Elon Musk teases insane capabilities of next major FSD update
Tesla CEO Elon Musk teased the insane capabilities of the next major Full Self-Driving update just hours after the company rolled out version 14.2 to owners.
Tesla Full Self-Driving v14.2 had some major improvements from the previous iteration of v14.1.x. We were on v14.1.7, the most advanced configuration of the v14.1 family, before Tesla transitioned us and others to v14.2.
However, Musk has said that the improvements coming in the next major update, which will be v14.3, will be where “the last big piece of the puzzle finally lands.”
14.3 is where the last big piece of the puzzle finally lands
— Elon Musk (@elonmusk) November 21, 2025
There were some major improvements with v14.2, most notably, Tesla seemed to narrow in on the triggers that caused issues with hesitation and brake stabbing in v14.1.x.
One of the most discussed issues with the past rollout was that of brake stabbing, where the vehicle would contemplate proceeding with a route as traffic was coming from other directions.
We experienced it most frequently at intersections, especially four-way stop signs.
Elon Musk hints at when Tesla can fix this FSD complaint with v14
In our review of it yesterday, it was evident that this issue had been resolved, at least to the extent that we had no issues with it in a 62-minute drive, which you can watch here.
Some owners also reported a more relaxed driver monitoring system, which is something Tesla said it was working on as it hopes to allow drivers to text during operation in the coming months. We did not test this, as laws in Pennsylvania prohibit the use of phones at any time due to the new Paul Miller’s Law, which took effect earlier this year.
However, the improvements indicate that Tesla is certainly headed toward a much more sentient FSD experience, so much so that Musk’s language seems to be more indicative of a more relaxed experience in terms of overall supervision from the driver, especially with v14.3.
Musk did not release or discuss a definitive timeline for the release of v14.3, especially as v14.2 just rolled out to Early Access Program (EAP) members yesterday. However, v14.1 rolled out to Tesla owners just a few weeks ago in late 2025. There is the potential that v14.3 could be part of the coming Holiday Update, or potentially in a release of its own before the New Year.
News
Tesla Full Self-Driving v14.2 – Full Review, the Good and the Bad
Tesla rolled out Full Self-Driving version 14.2 yesterday to members of the Early Access Program (EAP). Expectations were high, and Tesla surely delivered.
With the rollout of Tesla FSD v14.2, there were major benchmarks for improvement from the v14.1 suite, which spanned across seven improvements. Our final experience with v14.1 was with v14.1.7, and to be honest, things were good, but it felt like there were a handful of regressions from previous iterations.
While there were improvements in brake stabbing and hesitation, we did experience a few small interventions related to navigation and just overall performance. It was nothing major; there were no critical takeovers that required any major publicity, as they were more or less subjective things that I was not particularly comfortable with. Other drivers might have been more relaxed.
With v14.2 hitting our cars yesterday, there were a handful of things we truly noticed in terms of improvement, most notably the lack of brake stabbing and hesitation, a major complaint with v14.1.x.
However, in a 62-minute drive that was fully recorded, there were a lot of positives, and only one true complaint, which was something we haven’t had issues with in the past.
The Good
Lack of Brake Stabbing and Hesitation
Perhaps the most notable and publicized issue with v14.1.x was the presence of brake stabbing and hesitation. Arriving at intersections was particularly nerve-racking on the previous version simply because of this. At four-way stops, the car would not be assertive enough to take its turn, especially when other vehicles at the same intersection would inch forward or start to move.
This was a major problem.
However, there were no instances of this yesterday on our lengthy drive. It was much more assertive when arriving at these types of scenarios, but was also more patient when FSD knew it was not the car’s turn to proceed.
Can report on v14.2 today there were ZERO instances of break stabbing or hesitation at intersections today
It was a significant improvement from v14.1.x
— TESLARATI (@Teslarati) November 21, 2025
This improvement was the most noticeable throughout the drive, along with fixes in overall smoothness.
Speed Profiles Seem to Be More Reasonable
There were a handful of FSD v14 users who felt as if the loss of a Max Speed setting was a negative. However, these complaints will, in our opinion, begin to subside, especially as things have seemed to be refined quite nicely with v14.2.
Freeway driving is where this is especially noticeable. If it’s traveling too slow, just switch to a faster profile. If it’s too fast, switch to a slower profile. However, the speeds seem to be much more defined with each Speed Profile, which is something that I really find to be a huge advantage. Previously, you could tell the difference in speeds, but not in driving styles. At times, Standard felt a lot like Hurry. Now, you can clearly tell the difference between the two.
It seems as if Tesla made a goal that drivers should be able to tell which Speed Profile is active if it was not shown on the screen. With v14.1.x, this was not necessarily something that could be done. With v14.2, if someone tested me on which Speed Profile was being used, I’m fairly certain I could pick each one.
Better Overall Operation
I felt, at times, especially with v14.1.7, there were some jerky movements. Nothing that was super alarming, but there were times when things just felt a little more finicky than others.
v14.2 feels much smoother overall, with really great decision-making, lane changes that feel second nature, and a great speed of travel. It was a very comfortable ride.
The Bad
Parking
It feels as if there was a slight regression in parking quality, as both times v14.2 pulled into parking spots, I would have felt compelled to adjust manually if I were staying at my destinations. For the sake of testing, at my first destination, I arrived, allowed the car to park, and then left. At the tail-end of testing, I walked inside the store that FSD v14.2 drove me to, so I had to adjust the parking manually.
This was pretty disappointing. Apart from parking at Superchargers, which is always flawless, parking performance is something that needs some attention. The release notes for v14.2. state that parking spot selection and parking quality will improve with future versions.
Any issues with parking on your end? 14.1.7 didn’t have this trouble with parking pic.twitter.com/JPLRO2obUj
— TESLARATI (@Teslarati) November 21, 2025
However, this was truly my only complaint about v14.2.
You can check out our full 62-minute ride-along below:
Elon Musk
SpaceX issues statement on Starship V3 Booster 18 anomaly
The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX’s initial comment
As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.
“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X.
Incident and aftermath
Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.
Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.