Connect with us

News

Tesla patent hints at more reliable batteries through ‘dynamic’ management system

Published

on

It is no exaggeration to state that Tesla’s business hinges on its battery technology. Fortunately for the company, its batteries are among the best in the industry today. This is particularly notable in the case of Tesla’s electric cars, as well as its energy storage products. In terms of vehicles, Tesla’s battery tech has reached a point where it is capable of supporting the demands of closed circuit driving, as is the case with the Model 3 Performance’s Track Mode. In terms of battery storage, the quality and performance of Tesla’s batteries have been so impressive in South Australia that it appears to have started an energy storage movement.

Considering Tesla’s reputation for never staying still, though, it is almost certain that the company’s batteries will improve over time. This was mentioned by Tesla’s President of Automotive Jerome Guillen to CNBC last November, when he noted that the company’s technology consistently evolves. In his segment, the executive noted that “the design of the (battery) cell is not frozen,” indicating upcoming improvements in the near future.

A recently published patent points to one of these battery tech improvements. Titled “Multi-Channel and Bi-Directional Battery Management System,” the patent describes a way for Tesla to push the envelope on its battery management system even further. In the patent’s description, Tesla noted that the increasing demand for battery-based power is putting an emphasis on the performance demands of management systems, which ensure proper operation within a range of products like electric vehicles and energy storage units.

While battery management systems perform vital functions, the units themselves could be subject to various external factors. In the case of electric cars, the system could be subject to mechanical vibration and shock, varying environmental temperature, multiple power domains and a large number of interference sources that could deteriorate signals between the centralized management controller and multiple battery integrated circuits. Considering that batteries are the only power source for electric vehicles, instances involving a failure of the system could render an electric vehicle inoperable. With this in mind, Tesla notes that there is a need for a battery management system that is “more robust and dynamic.”

Advertisement

Diagrams of Tesla’s battery management system. (Photo: US Patent Office)

Tesla’s patent describes what could be dubbed as a redundant battery management system, comprising a first client coupled within a multi-channel, bi-directional and daisy-chained communication loop. The electric car maker also outlined a method for identifying a failure location within a battery management system. Tesla describes these as follows.

“The battery management system may include a host (such as a microcontroller that manages at a system level) and clients (such as battery management integrated circuits that manage battery cells within the system). In embodiments, the host may be implemented in various structures including the previously mentioned microcontroller and manages the system by transmitting commands and receiving responses from one or more of the clients. Each client may monitor and control corresponding battery cells to measure the electrical and physical status of the cells, such as voltage, amount of remaining electrical charge and temperature of each cell. For instance, the client 120a may monitor the cells 130a. It is noted that each client may monitor a different number of battery cells. The client 120a may perform measurements (e.g., voltage, charge, temperature, etc.) as well as perform certain functions (e.g., bleed-off charge from a battery cell, etc).”

Tesla further discussed its rationale behind its use of daisy-chain loops for its battery management system.

Advertisement

“The host and each client may communicate commands and responses via a daisy-chain transmission path loop, where the daisy-chain loop may include a pair of wires that transmit electrical signals therethrough. In embodiments, the daisy-chain loop may connect the interface of the host to the interfaces of the clients in series so that communication may serially occur on one or multiple channels within the loop. “

“The battery management system is able to provide redundant communication paths because of its ability to bi-directionally communicate along the daisy-chain loop and because the two channels used on the daisy-chain loop each allow access to completely separate and redundant battery management systems. Specifically, the host is able to communicate in a clockwise direction around the serially connected clients as well as communicate in a counter-clockwise direction along the loop. This bi-directionality allows the host to communicate with each client in case there is a single failure within the daisy-chain loop. This redundancy applies to both channels.”

Ultimately, Tesla notes that these systems will result in what could only be described as “dynamic redundancy” across its battery management systems. This, of course, could foster a new generation of battery packs that are more reliable than the company’s already stellar batteries.

“One skilled in the art will recognize the use of a multi-channel signaling system as well as a bi-directional signaling architecture within the battery management system results in dynamic redundancy across the system itself. For example, if a primary or secondary circuit should fail on a client, the host may communicate a redundant command to the client using a different and fully operational channel. The multiple channel architecture ensures that even egregious malfunction of a sub-system, such as the transmission of spurious data, will not be able to interfere with normal operation of a complementary subsystem operating on a different channel. In addition, the bi-directionality of the system allows for compensation to occur in the event of a complete path failure somewhere within the loop.”

Advertisement

The past months have seen an influx of published patents for Tesla. Among these include an automatic tire inflation system patent that can pave the way for off-road capabilities for the company’s vehicles, a clever patent that would allow Tesla to address panel gaps during vehicle assembly, a patent that describes colored solar roof tiles, and even a system that uses electric cars as a way to improve vehicle positioning.

Tesla’s recently published patent on its Multi-Channel and Bi-Directional Battery Management System could be accessed in full here.

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

News

Tesla Supercharger vandalized with frozen cables and anti-Musk imagery amid Sweden union dispute

The incident comes amid Tesla’s ongoing labor dispute with IF Metall.

Published

on

Credit: Tesla Charging/X

Tesla’s Supercharger site in Vansbro, Sweden, was vandalized during peak winter travel weeks. Images shared to local media showed frozen charging cables and a banner reading “Go home Elon,” which was complete with a graphic of Musk’s controversial gesture. 

The incident comes amid Tesla’s ongoing labor dispute with IF Metall, which has been striking against the company for more than two years over collective bargaining agreements, as noted in a report from Expressen.

Local resident Stefan Jakobsson said he arrived at the Vansbro charging station to find a board criticizing Elon Musk and accusing Tesla of strikebreaking. He also found the charging cables frozen after someone seemingly poured water over them.

“I laughed a little and it was pretty nicely drawn. But it was a bit unnecessary,” Jakobsson said. “They don’t have to do vandalism because they’re angry at Elon Musk.”

Advertisement

The site has seen heavy traffic during Sweden’s winter sports holidays, with travelers heading toward Sälen and other mountain destinations. Jakobsson said long lines formed last weekend, with roughly 50 Teslas and other EVs waiting to charge.

Tesla Superchargers in Sweden are typically open to other electric vehicle brands, making them a reliable option for all EV owners. 

Tesla installed a generator at the location after sympathy strikes from other unions disrupted power supply to some stations. The generator itself was reportedly not working on the morning of the incident, though it is unclear whether that was connected to the protest.

The dispute between Tesla and IF Metall centers on the company’s refusal to sign a collective agreement covering Swedish workers. The strike has drawn support from other unions, including Seko, which has taken steps affecting electricity supply to certain Tesla facilities. Tesla Sweden, for its part, has insisted that its workers are already fairly compensated and it does not need a collective agreement,

Advertisement

Jesper Pettersson, press spokesperson for IF Metall, criticized Tesla’s use of generators to keep charging stations running. Still, IF Metall emphasized that it strongly distances itself from the vandalism incident at the Vansbro Supercharger.

“We think it is remarkable that instead of taking the easy route and signing a collective agreement for our members, they are choosing to use every possible means to get around the strike,” Pettersson said.

Advertisement
Continue Reading

News

Tesla Cybertruck owner credits FSD for saving life after freeway medical emergency

The incident was shared by the Tesla owner on social media platform X, where it caught the attention of numerous users, including Tesla CEO Elon Musk.

Published

on

Credit: Tesla

A Tesla Cybertruck owner has credited Full Self-Driving (FSD) Supervised for saving his life after he experienced a medical emergency on the freeway.

The incident was shared by the Tesla owner on social media platform X, where it caught the attention of numerous users, including Tesla CEO Elon Musk.

In a post on X, Cybertruck owner Rishi Vohra wrote that he had unintentionally fasted for 17 hours, taken medication, and experienced what he described as a severe allergic reaction while driving.

“What started as a normal drive turned terrifying fast. My body shut down. I passed out while driving on the freeway, mid-conversation with my wife on the phone,” he wrote.

Advertisement

Vohra stated that his Tesla was operating with FSD Supervised engaged at the time. According to his account, the Cybertruck detected that he had lost consciousness using its driver monitoring system, slowed down, activated hazard lights, and safely pulled over to the shoulder.

“Thank God my Tesla had Full Self-Driving engaged. It detected I lost consciousness (thanks to the driver monitoring system), immediately slowed, activated hazards, and safely pulled over to the shoulder. No crash. No danger to anyone else on the road,” Vohra wrote.

The Cybertruck owner added that his wife used Life360 to alert emergency services after hearing him go silent during their call. He said responders located him within five minutes. After being attended to, Vohra stated that the vehicle then drove him to the emergency room after he refused to leave his truck on the freeway.

“So the Tesla autonomously drove me the rest of the way to the ER. I walked in, got admitted, and they stabilized me overnight,” he wrote.

Advertisement

He later posted that he was being discharged and thanked Tesla and Elon Musk. Musk replied to the post, writing, “Glad you’re ok!” The official Tesla X account also reposted Vohra’s story with a heart emoji. 

Tesla recently published updated safety data of vehicles operating with FSD (Supervised) engaged. As per Tesla’s latest North America figures, vehicles operating with FSD (Supervised) engaged recorded one major collision every 5,300,676 miles. The U.S. average is one major collision every 660,164 miles. 

Considering the experience of the Cybertruck owner, Tesla’s safety data does seem to hold a lot of water. A vehicle that is manually driven would have likely crashed or caused a pileup if its driver lost consciousness in the middle of the freeway, after all. 

Continue Reading

News

Tesla Cyberbeast price drops to less than $100k but loses Luxe package with FSD

The change adjusts the truck’s positioning in the high-performance premium EV pickup truck segment, where several rivals now command six-figure price tags.

Published

on

Credit: Tesla

Tesla has reduced the price of the Cyberbeast to below $99,990, but the update also removes a compelling feature set from the vehicle.

The change adjusts the truck’s positioning in the high-performance premium EV pickup truck segment, where several rivals now command six-figure price tags.

Prior to its price adjustment, the Cyberbeast was listed for $114,990. However, the vehicle’s prior configuration included a Luxe package that bundled features such as Full Self-Driving Supervised and other premium inclusions. That package is no longer listed as part of the Cyberbeast.

For its sub $100,000 price, the Cyberbeast offers 325 miles of estimated range, a 0-60 mph time of 2.6 seconds, a payload capacity of 2,271 lbs with the Cyber Wheel, and Powershare.

Advertisement

Interestingly enough, the Cyberbeast now undercuts some of its most powerful competitors with its updated price. The Rivian R1T Quad, for example, starts at $116,900, though the R1T has more range at 374 miles per charge, and it is also a bit faster with a 0-60 mph time of 2.5 seconds. 

Other rivals include the GMC Hummer EV 3X Omega Edition Truck, which has a starting MSRP of approximately $148,000 before dealer markups, the Chevy Silverado EV LT Max Range, which starts at over $91,000 before dealer markups, and the GMC Sierra EV Denali Max, which starts at about $101,000. 

Considering that rivals like the Rivian R1T Quad, Chevy Silverado EV LT Max Range, and GMC Sierra EV Denali Max outgun the Cyberbeast in raw range, the Cyberbeast’s competitiveness will likely rely on its Full Self Driving Supervised system, which allows it to navigate inner city streets and highways. 

For $99 per month, the Cyberbeast practically becomes a self-driving vehicle, and that is something that its rivals cannot match, at least for now. 

Advertisement
Continue Reading