Connect with us

News

Tesla Semi tire inflation patent paves way for pickup truck, Model Y & X’s off-road abilities

Published

on

During Tesla’s third-quarter earnings call, Elon Musk noted that the company continues to make headway on its future vehicles. Musk noted that he had already approved the production of the Model Y prototype, while pointing out that the company is making progress on the next-generation Roadster and the Tesla Semi. Musk reiterated his enthusiasm about the Tesla pickup truck as well, which he admits is a vehicle he is most excited about.

Some of the improvements to the Tesla Semi appear to have been teased in one of the company’s recently-published patent applications. The patent, which was published on October 18, 2018, and titled “Automatic Tire Inflation System with Thru-Hub Air Feed,” outlined a system enabling Tesla’s vehicles to inflate or deflate their tires as necessary. While several vehicles today already have Automatic Tire Inflation Systems, Tesla’s patent application notes that conventional ATIS have much room for improvement.

“These prior solutions had a number of shortcomings. With some prior art techniques, air was fed through hollow drive axles to a fitting located on the end thereof. The fitting was then coupled to the air inlets of the tires. To couple the air into the hollow drive axles, a rotatingly attached fitting coupled air from an air storage to the inside of the hollow axles. This fitting was subject to leakage of contaminants. These contaminants interfered with the operation of the ATIS and eventually caused the ATIS to fail.”

Diagrams of Tesla’s Automatic Tire Inflation System. [Credit: US Patent Office]

Tesla’s ATIS patent involves a system that features valves, a rotary air seal, and bearings, to avoid contamination. With such a system in place, Tesla notes that the wheels of its vehicles would likely last longer, and tires would require even less maintenance.

Advertisement
-->

“In order to overcome the shortcomings described above among other shortcomings, an Automatic Tire Inflation System (ATIS) for use with a vehicle according to a first described embodiment includes a controller, valves controlled by the controller, the valves having an air supply inlet, and a plurality of air outlets. Further, the ATIS includes, for at least one drive axle having inner bearings and outer bearings, a channel formed in a spindle, first hosing coupling a valve of the valves controlled by the controller to the channel formed in the spindle, a channel formed in a hub, a rotary air seal residing between the inner bearings and the outer bearings and coupling the channel formed in the spindle to the channel formed in the hub, and second hosing coupling the channel formed in the hub to at least one wheel.

“Thus, as compared to the prior ATIS systems, the ATIS of the first embodiment, significantly reduces contamination in the ATIS air stream. Reduction in contamination extends the life of the ATIS, extends spindle life, extends hub life, and extends serviced wheel/tire lives and extends maintenance intervals.”

While the diagrams in the patent application suggest that Tesla’s upcoming ATIS would be used for the Semi, the applications for the automatic tire inflation system for the company’s other, upcoming vehicles are notable. Having the capability to automatically inflate tires depending on the terrain, after all, would allow Tesla to start giving its vehicles some form of off-road capability. Under-inflated tires are key to off-road driving, since they are capable of flexing more, allowing vehicles to “crawl” over rocks and other sharp, irregular terrain. Under-inflated tires also have a wider contact path, allowing vehicles to gain more traction in terrain like deep sand or soft snow. 

For now, Tesla’s vehicles are optimized for city and interstate driving, and while there are accounts of the Model X being taken off-road (EV YouTuber Bjorn Nyland’s extreme driving test sessions come to mind), the company’s electric cars are yet to have features that are specifically geared towards off-road driving. With an ATIS system, Tesla’s upcoming vehicles such as the Tesla pickup truck, and even the company’s SUVs like the Model Y and a future iteration of the Model X, could have the ability to explore areas beyond paved roads. Such capabilities would likely be invaluable, considering that legendary vehicles like the Ford F-150 and the Chevy Blazer established their legacies by proving themselves capable in areas where neither asphalt nor concrete is present. 

Tesla’s full patent for its Automatic Tire Inflation system could be accessed here.

Advertisement
-->

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

News

Tesla reliability rankings skyrocket significantly in latest assessment

“They definitely have their struggles, but by continuing to refine and not make huge changes in their models, they’re able to make more reliable vehicles, and they’ve moved up our rankings.”

Published

on

Credit: Tesla

Tesla ranked in the Top 10 of the most reliable car companies for 2026, as Consumer Reports’ latest index showed significant jumps from the past two years.

In 2022, Tesla ranked 27th out of 28 brands. Last year, it came in 17th.

However, 2026’s rankings were differentCR‘s rankings officially included Tesla in the Top 10, its best performance to date.

Finishing tenth, the full Top 10 is:

  1. Subaru
  2. BMW
  3. Porsche
  4. Honda
  5. Toyota
  6. Lexus
  7. Lincoln
  8. Hyundai
  9. Acura
  10. Tesla

Tesla has had steady improvements in its build quality, and its recent refinements of the Model 3 and Model Y have not gone unnoticed.

The publication’s Senior Director of Auto Testing, Jake Fisher, said about Tesla that the company’s ability to work through the rough patches has resulted in better performance (via CNBC):

“They definitely have their struggles, but by continuing to refine and not make huge changes in their models, they’re able to make more reliable vehicles, and they’ve moved up our rankings.”

Advertisement
-->

He continued to say that Tesla’s vehicles have become more reliable over time, and its decision to avoid making any significant changes to its bread-and-butter vehicles has benefited its performance in these rankings.

Legacy automakers tend to go overboard with changes, sometimes keeping a model name but recognizing a change in its “generation.” This leads to constant growing pains, as the changes in design require intense adjustments on the production side of things.

Instead, Tesla’s changes mostly come from a software standpoint, which are delivered through Over-the-Air updates, which improve the vehicle’s functionality or add new features.

Only one Tesla vehicle scored below average in Consumer Reports’ rankings for 2026 was the Cybertruck. Fisher’s belief that Tesla improves its other models over time might prove to be true with Cybertruck in a few years.

Tesla Cybertruck gets reviewed by Consumer Reports

Advertisement
-->

He continued:

“They’re definitely improving by keeping with things and refining, but if you look at their 5- to 10-year-old models that are out there, when it comes to reliability, they’re dead last of all the brands. They’re able to improve the reliability if they don’t make major changes.”

Regarding Subaru’s gold medal placing on the podium, Fisher said:

“While Subaru models provide good performance and comfort, they also excel in areas that may not be immediately apparent during a test drive.”

Other notable brands to improve are Rivian, which bumped itself slightly from 31 to 26. Chevrolet finished 24th, GMC ended up 29th, and Ford saw itself in 18th.

Advertisement
-->
Continue Reading

Elon Musk

Tesla Full Self-Driving v14.2.1 texting and driving: we tested it

We decided to test it, and our main objective was to try to determine a more definitive label for when it would allow you to grab your phone and look at it without any nudge from the in-car driver monitoring system.

Published

on

Credit: Grok

On Thursday, Tesla CEO Elon Musk said that Full Self-Driving v14.2.1 would enable texting and driving “depending on [the] context of surrounding traffic.”

Tesla CEO Elon Musk announces major update with texting and driving on FSD

We decided to test it, and our main objective was to try to determine a more definitive label for when it would allow you to grab your phone and look at it without any nudge from the in-car driver monitoring system.

I’d also like to add that, while Tesla had said back in early November that it hoped to allow this capability within one to two months, I still would not recommend you do it. Even if Tesla or Musk says it will allow you to do so, you should take into account the fact that many laws do not allow you to look at your phone. Be sure to refer to your local regulations surrounding texting and driving, and stay attentive to the road and its surroundings.

The Process

Based on Musk’s post on X, which said the ability to text and drive would be totally dependent on the “context of surrounding traffic,” I decided to try and find three levels of congestion: low, medium, and high.

Advertisement
-->

I also tried as best as I could to always glance up at the road, a natural reaction, but I spent most of my time, during the spans of when it was in my hand, looking at my phone screen. I limited my time looking at the phone screen to a few seconds, five to seven at most. On local roads, I didn’t go over five seconds; once I got to the highway, I ensured the vehicle had no other cars directly in front of me.

Also, at any time I saw a pedestrian, I put my phone down and was fully attentive to the road. I also made sure there were no law enforcement officers around; I am still very aware of the law, which is why I would never do this myself if I were not testing it.

I also limited the testing to no more than one minute per attempt.

I am fully aware that this test might ruffle some feathers. I’m not one to text and drive, and I tried to keep this test as abbreviated as possible while still getting some insight on how often it would require me to look at the road once again.

The Results

Low Congestion Area

I picked a local road close to where I live at a time when I knew there would be very little traffic. I grabbed my phone and looked at it for no more than five seconds before I would glance up at the road to ensure everything was okay:

Advertisement
-->

Looking up at the road was still regular in frequency; I would glance up at the road after hitting that five-second threshold. Then I would look back down.

I had no nudges during this portion of the test. Traffic was far from even a light volume, and other vehicles around were very infrequently seen.

Medium Congestion Area

This area had significantly more traffic and included a stop at a traffic light. I still kept the consecutive time of looking at my phone to about five seconds.

Advertisement
-->

I would quickly glance at the road to ensure everything was okay, then look back down at my phone, spending enough time looking at a post on Instagram, X, or Facebook to determine what it was about, before then peeking at the road again.

There was once again no alert to look at the road, and I started to question whether I was even looking at my phone long enough to get an alert:

Based on past versions of Full Self-Driving, especially dating back to v13, even looking out the window for too long would get me a nudge, and it was about the same amount of time, sometimes more, sometimes less, I would look out of a window to look at a house or a view.

Advertisement
-->

High Congestion Area

I decided to use the highway as a High Congestion Area, and it finally gave me an alert to look at the road.

As strange as it is, I felt more comfortable looking down at my phone for a longer amount of time on the highway, especially considering there is a lower chance of a sudden stop or a dangerous maneuver by another car, especially as I was traveling just 5 MPH over in the left lane.

This is where I finally got an alert from the driver monitoring system, and I immediately put my phone down and returned to looking at the road:

Advertisement
-->

Once I was able to trigger an alert, I considered the testing over with. I think in the future I’d like to try this again with someone else in the car to keep their eyes on the road, but I’m more than aware that we can’t always have company while driving.

My True Thoughts

Although this is apparently enabled based on what was said, I still do not feel totally comfortable with it. I would not ever consider shooting a text or responding to messages because Full Self-Driving is enabled, and there are two reasons for that.

The first is the fact that if an accident were to happen, it would be my fault. Although it would be my fault, people would take it as Tesla’s fault, just based on what media headlines usually are with accidents involving these cars.

Secondly, I am still well aware that it’s against the law to use your phone while driving. In Pennsylvania, we have the Paul Miller Law, which prohibits people from even holding their phones, even at stop lights.

I’d feel much more comfortable using my phone if liability were taken off of me in case of an accident. I trust FSD, but I am still erring on the side of caution, especially considering Tesla’s website still indicates vehicle operators have to remain attentive while using either FSD or Autopilot.

Advertisement
-->

Check out our full test below:

Continue Reading

Elon Musk

Tesla CEO Elon Musk announces major update with texting and driving on FSD

“Depending on context of surrounding traffic, yes,” Musk said in regards to FSD v14.2.1 allowing texting and driving.

Published

on

Credit: carwow/YouTube

Tesla CEO Elon Musk has announced a major update with texting and driving capabilities on Full Self-Driving v14.2.1, the company’s latest version of the FSD suite.

Tesla Full Self-Driving, even in its most mature and capable versions, is still a Level 2 autonomous driving suite, meaning it requires attention from the vehicle operator.

You cannot sleep, and you should not take attention away from driving; ultimately, you are still solely responsible for what happens with the car.

The vehicles utilize a cabin-facing camera to enable attention monitoring, and if you take your eyes off the road for too long, you will be admonished and advised to pay attention. After five strikes, FSD and Autopilot will be disabled.

However, Musk announced at the Annual Shareholder Meeting in early November that the company would look at the statistics, but it aimed to allow people to text and drive “within the next month or two.”

Advertisement
-->

He said:

“I am confident that, within the next month or two, we’re gonna look at the safety statistics, but we will allow you to text and drive.”

Advertisement
-->

Today, Musk confirmed that the current version of Full Self-Driving, which is FSD v14.2.1, does allow for texting and driving “depending on context of surrounding traffic.”

There are some legitimate questions with this capability, especially as laws in all 50 U.S. states specifically prohibit texting and driving. It will be interesting to see the legality of it, because if a police officer sees you texting, they won’t know that you’re on Full Self-Driving, and you’ll likely be pulled over.

Some states prohibit drivers from even holding a phone when the car is in motion.

Advertisement
-->

It is certainly a move toward unsupervised Full Self-Driving operation, but it is worth noting that Musk’s words state it will only allow the vehicle operator to do it depending on the context of surrounding traffic.

He did not outline any specific conditions that FSD would allow a driver to text and drive.

Continue Reading