Energy
Tesla partner Panasonic says 30% energy density increase in lithium-ion batteries possible

The market for lithium-ion batteries (LIBs) is expected to exceed $33 billion by 2019 and $26 billion by 2023, according to global market research firm SIS International Research. The success of Tesla and its Nevada-based Gigafactory facility has generated a lot of excitement in the LIB industry. Panasonic’s automobile battery sales are forecast to grow to $4 billion a year by March 2019, largely due to their partnership with Tesla.
“We think the existing technology can still extend the energy density of LIBs by 20% to 30%,” Panasonic’s President Kazuhiro Tsuga said. “But there is a trade-off between energy density and safety. So, if you look for even more density, you have to think about additional safety technology as well. Solid-state batteries are one [possible] answer.” These safety concerns about LIBs are also pushing Panasonic to look at alternative battery power sources.
Solid state batteries use a solid electrolyte instead of the electrolytic solution that is essential in transporting the positive lithium ions between the cathode and anode in today’s batteries. Researchers have succeeded in developing an efficient electrolytic solid material that significantly improves lithium ion conductance, raising hopes that batteries with much higher power densities are edging closer to practical applications.
“For decades now we have been pushing the limits of our Li-ion batteries in terms of energy density,” Naoaki Yabuuchi, an associate professor at Tokyo Denki University, acknowledged. “Today’s best Li-ion cells can put out about 300 watts per kilogram; a package of Li-ion cells can give off from 150 watts to 250 watts per kilogram. These levels are already close to the theoretical maximum.”
Yabuuchi is an expert on various types of rechargeable batteries. In his view, LIBs will reach the limit of their desirability as early as the first half of 2020 if their development continues to rely on existing technologies. But he has hope that new research can open up more capacity. “Existing LIBs still have room to improve their energy density because you can raise the density by introducing a nickel-based cathode material, so you can expect the batteries will still be used in the next few years.”
It’s not just Tesla and its partners like Panasonic that are interested in LIB capacity. Range anxiety continues to plague possible Tesla and other EV brand buyers, as they fear an inability to travel far enough between vehicle charges and not having access to convenient charging facilities. “We want our electric cars to go 500 km [on a single charge],” said Shinji Nakanishi, a battery researcher at Toyota, via EVannex. “And for this, we want rechargeable batteries that can generate 800 to 1,000 watt-hours per liter.”
Battery research into alternatives to LIBs is quickly evolving. The Battery Symposium in Japan, once a showcase for fuel cells and LIB cathode materials, has seen a significant shift in recent years to industry presentations on solid-state, lithium-air, and non-Li-ion batteries.
Another possible LIB alternative, lithium-air batteries, has the ability to greatly improve energy density. At this point, however, researchers are stymied because lithium-air batteries suffer from poor cycle life. But researchers haven’t given up hope. They’ve been attempting to raise the density close to theoretically expected levels, even if it occurs only for a single charge cycle.
And an entirely different alternative to the LIB doesn’t even use lithium: a cathode material for the sodium-ion battery has a discharge capacity that beats LIBs and enables the power packs to be recharged upward of 500 times. That would circumvent one of the existing weakness that now limits this technology. Two nickel-based cathode materials, lithium nickel cobalt aluminum oxide and lithium nickel manganese cobalt oxide, are sometimes mentioned in these discussions, but neither seem to have a clear potential for practical use within the next decade, according to Yabuuchi.
Tesla is leading the global shift in the automotive industry from traditional gasoline powered vehicles to more fuel-efficient, environmentally responsible modes of transport. Musk has exclaimed that the 2170 cell is “the highest energy density cell in the world and also the cheapest.” Yet, as an industry disrupter, part of Tesla’s vision has been to constantly evaluate new battery technologies. Back in 2013, Ted Merendino, a Tesla product planner, noted that “Tesla has one of the largest cell characterization laboratories in the world. We have just about every cell you can imagine on test.”
That constant inquiry behind the scenes into cell characterization at Tesla may become prudent in previously unforeseen ways. Recently, for example, with the lithium market in its most severe shortage in modern memory, Musk insisted that the amount of lithium in a LIB is about 2% of its total volume and that “lithium in a salt form is virtually everywhere… there is definitely no supply issues with lithium.” Some in the industry disagree with lithium’s resource stability, however, so that alternative battery research may end up offering good karma.
In 2016, sales of LIBs for electric vehicles increased by some 66%, up from 12.3 GWh of capacity to 20.4 GWh. LIBs are the go-to source for EV power right now. Many other products use LIBs: chainsaws, mini-cameras, solar window chargers, wheelchairs, bicycles, portable self-charging desks.
But, with safety issues surrounding LIBs, the limitations of their charge capacity, and lithium market limitations, will Tesla invest in R&D toward alternative battery development so it sooner-than-later adds battery alternatives to its catalog?
Of course, advances from R&D take years to make their way to the marketplace, but should one or more of these promising technologies be translated for commercial means, then we may see innovative improvements in batteries, which could also enhance the performance and cost of our beloved Teslas.
Source: Nikkei Asian Review via EVannex
Energy
Tesla Energy celebrates one decade of sustainability
Tesla Energy has gone far since its early days, and it is now becoming a progressively bigger part of the company.

Tesla Energy recently celebrated its 10th anniversary with a dedicated video showcasing several of its milestones over the past decade.
Tesla Energy has gone far since its early days, and it is now becoming a progressively bigger part of the company.
Tesla Energy Early Days
When Elon Musk launched Tesla Energy in 2015, he noted that the business is a fundamental transformation of how the world works. To start, Tesla Energy offered the Powerwall, a 7 kWh/10 kWh home battery system, and the Powerpack, a grid-capable 100 kWh battery block that is designed for scalability. A few days after the products’ launch, Musk noted that Tesla had received 38,000 reservations for the Powerwall and 2,500 reservations for the Powerpack.
Tesla Energy’s beginnings would herald its quiet growth, with the company later announcing products like the Solar Roof tile, which is yet to be ramped, and the successor to the Powerwall, the 13.5 kWh Powerwall 2. In recent years, Tesla Energy also launched its Powerwall 3 home battery and the massive Megapack, a 3.9 MWh monster of a battery unit that has become the backbone for energy storage systems across the globe.
Key Milestones
As noted by Tesla Energy in its recent video, it has now established facilities that allow the company to manufacture 20,000 units of the Megapack every year, which should help grow the 23 GWh worth of Megapacks that have already been deployed globally.
The Powerwall remains a desirable home battery as well, with more than 850,000 units installed worldwide. These translate to 12 GWh of residential entry storage delivered to date. Just like the Megapack, Tesla is also ramping its production of the Powerwall, allowing the division to grow even more.
Tesla Energy’s Role
While Tesla Energy does not catch as much headlines as the company’s electric vehicle businesses, its contributions to the company’s bottom line have been growing. In the first quarter of 2025 alone, Tesla Energy deployed 10.4 GWh of energy storage products. Powerwall deployments also crossed 1 GWh in one quarter for the first time. As per Tesla in its Q1 2025 Update Letter, the gross margin for the Energy division has improved sequentially as well.
Elon Musk
Tesla Energy shines with substantial YoY growth in deployments

Tesla Energy shined in what was a weak delivery report for the first quarter, as the company’s frequently-forgotten battery storage products performed extraordinarily well.
Tesla reported its Q1 production, delivery, and deployment figures for the first quarter of the year, and while many were less-than-excited about the automotive side, the Energy division performed well with 10.4 GWh of energy storage products deployed during the first quarter.
This was a 156 percent increase year-over-year and the company’s second-best quarter in terms of energy deployments to date. Only Q4 2024 was better, as 11 GWh was recorded.
Tesla Energy is frequently forgotten and not talked about enough. The company has continued to deploy massive energy storage projects across the globe, and as it recorded 31.5 GWh of deployments last year, 2025 is already looking as if it will be a record-setting year if it continues at this pace.
Tesla Megapacks to back one of Europe’s largest energy storage sites
Although Energy performed well, many investors are privy to that of the automotive division’s performance, which is where some concern lies. Tesla had a weak quarter for deliveries, missing Wall Street estimates by a considerable margin.
There are two very likely reasons as to why this happened: the first is Tesla’s switchover to the new Model Y at its production facilities across the globe. Tesla said it lost “several weeks” of production due to the updating of manufacturing lines as it rolled out a new version of its all-electric crossover.
Secondly, Tesla could be facing some pressure from pushback against the brand, which is what many analysts will say. Despite the publicity of attacks on Tesla drivers and their vehicles, as well as the company’s showrooms, it would be safe to assume that we will have a better picture painted of what the issue is in Q2 after the company reports numbers in July.
If Tesla is still struggling with lackluster delivery figures in Q2 after the Model Y is ramped and deliveries are more predictable and consistent, we could see where the argument for brand damage is legitimate. However, we are more prone to believe the Model Y, which accounts for most of Tesla’s sales, and its production ramp is likely the cause for what happened in Q1.
In what was a relatively bleak quarter, Tesla Energy still shines as the bright spot for the quarter.
Energy
Tesla lands in Texas for latest Megapack production facility

Tesla has chosen the location of its latest manufacturing project, a facility that will churn out the Megapack, a large-scale energy storage system for solar energy projects. It has chosen Waller County, Texas, as the location of the new plant, according to a Commissioners Court meeting that occurred on Wednesday, March 5.
Around midday, members of the Waller County Commissioners Court approved a tax abatement agreement that will bring Tesla to its area, along with an estimated 1,500 jobs. The plant will be located at the Empire West Industrial Park in the Brookshire part of town.
Brookshire also plans to consider a tax abatement for Tesla at its meeting next Thursday.
The project will see a one million square-foot building make way for Tesla to build Megapack battery storage units, according to Covering Katy News, which first reported on the company’s intention to build a plant for its energy product.
CEO Elon Musk confirmed on the company’s Q4 2024 Earnings Call in late January that it had officially started building its third Megapack plant, but did not disclose any location:
“So, we have our second factory, which is in Shanghai, that’s starting operation, and we’re building a third factory. So, we’re trying to ramp output of the stationary battery storage as quickly as possible.”
Tesla plans third Megafactory after breaking energy records in 2024
The Megapack has been a high-demand item as more energy storage projects have started developing. Across the globe, regions are looking for ways to avert the loss of power in the event of a natural disaster or simple power outage.
This is where Megapack comes in, as it stores energy and keeps the lights on when the main grid is unable to provide electricity.
Vince Yokom of the Waller County Economic Development Partnership, commented on Tesla’s planned Megapack facility:
“I want to thank Tesla for investing in Waller County and Brookshire. This will be a state-of-the-art manufacturing facility for their Megapack product. It is a powerful battery unit that provides energy storage and support to help stabilize the grid and prevent outages.”
Tesla has had a lease on the building where it will manufacture the Megapacks since October 2021. However, it was occupied by a third-party logistics company that handled the company’s car parts.
-
News1 week ago
Tesla’s Hollywood Diner is finally getting close to opening
-
Elon Musk2 weeks ago
Tesla doubles down on Robotaxi launch date, putting a big bet on its timeline
-
News6 days ago
Tesla is trying to make a statement with its Q2 delivery numbers
-
Investor's Corner1 week ago
LIVE BLOG: Tesla (TSLA) Q1 2025 Company Update and earnings call
-
Elon Musk2 weeks ago
Tesla reportedly suspended Cybercab and Semi parts order amid tariff war: Reuters
-
SpaceX2 weeks ago
SpaceX pitches subscription model for Trump’s Golden Dome
-
News2 weeks ago
Driverless Teslas using FSD Unsupervised are starting to look common in Giga Texas
-
News4 days ago
NY Democrats are taking aim at Tesla direct sales licenses in New York