News
SpaceX and NASA accidentally set the stage for a new race to the Moon
Almost entirely driven by chance, SpaceX and NASA may soon find themselves in an unintentional race to return humans to the Moon for the first time in half a century.
Both entities – SpaceX with its next-generation BFR and NASA with its Shuttle-derived SLS – are tentatively targeting 2023 for their similar circumlunar voyages, in which NASA astronauts and private individuals could theoretically travel around the Moon within just months of each other, showcasing two utterly dissimilar approaches to space exploration.

Over the course of no fewer than seven years of development, NASA’s SLS rocket and Orion spacecraft have run into an unrelenting barrage of issues, effectively delaying the system’s launch debut at a rate equivalent to or even faster than the passage of time itself. In other words, every month recently spent working on the vehicle seems to have reliably corresponded with at least an additional month of delays for the launch system.
Why these incessant delays continue to occur is an entire story in itself and demands the acknowledgment of some uncomfortable and inconvenient realities about the state of NASA’s human spaceflight program in the 21st century, but that is a story is for another time.
- SLS. (NASA)
- NASA’s Orion spacecraft, European Service Module, and ICPS upper stage. (NASA)
A different kind of paper rocket
Returning to SLS, a brief overview is in order to properly contextualize what exactly the rocket and spacecraft are and what exactly their development has cost up to now. SLS is comprised of four major hardware segments.
- The Core Stage: A massive liquid hydrogen/liquid oxygen rocket booster, this section is essentially a lengthened version of the retired Space Shuttle’s familiar orange propellant tank, while the stage’s four engines are quite literally taken from stores of mothballed Space Shuttle hardware and will be ingloriously expended after each launch (SLS is 100% expendable).
- Solid Rocket Boosters (SRBs): Minimally modified copies of the SRBs used during the Space Shuttle program, SLS’ SRBs have slightly more solid propellant and have had all hints of reusability removed, whereas Space Shuttle boosters deployed parachutes and were reused after landing in the Atlantic Ocean.

- The Upper Stage (Interim Cryogenic Propulsion System, ICPS): ICPS is a slightly modified version of ULA’s off-the-shelf Delta IV upper stage.
- The Orion spacecraft and European Service Module: Borrowing heavily from the Apollo Command and Service Modules that took humanity to the Moon in the 1960s and 70s, Orion has been in funded development in one form or another for more than 12 years, with just one partial flight-test to call its own. Orion’s development has cost the U.S. approximately $16 billion since 2006, with another $4-6 billion expected between now and 2023, a sum that doesn’t account for the costs of production and operations once development is complete.
- The Orion spacecraft and ESM. (NASA)
For the SLS core stage and SRBs, a generous bottom-rung estimate indicates that $14 billion has been spent on the rocket itself between 2011 and 2018, not including many billions more spent refurbishing and modifying the rocket’s aging Saturn and Shuttle-derived launch infrastructure at Kennedy Space Center. Of the many distressing patterns that appear in the above descriptions of SLS hardware, most notable is a near-obsessive dependence upon “heritage” hardware that has already been designed and tested – in some cases even manufactured.
Despite cobbling together or reusing as many mature components, facilities, and workforces as possible and relying on slightly-modified commercial hardware at every turn, SLS and Orion will somehow end up costing the United States more than $30 billion dollars before it has completed a single full launch; potentially rising beyond $40 billion by the time the system is ready to launch NASA astronauts.
Moonward bound
SLS’ first crewed mission, known as Exploratory Mission-2 (EM-2), brings us to the title – NASA’s mission planning has settled on sending a crew of four astronauts on what is known as a Free Lunar Return trajectory in the Orion spacecraft, essentially a single flyby of the Moon. Official NASA statements appear to be sending mixed messages on the schedule for EM-2’s launch, with September 2018 presentations indicating 2022 while a late-August blog post suggests that the crewed circumlunar mission is targeting launch in 2023.
As it happens, SpaceX announced its own plans for a (private) crewed circumlunar voyage less than two weeks ago. Funded in large part by Japanese billionaire Yasuka Maezawa, SpaceX’s hopes to send 10+ people to the Moon on its next-generation BFR launch vehicle, comprised of a fully-reusable booster and spaceship. Deemed Dear Moon by Maezawa, SpaceX is targeting an extremely ambitious launch deadline sometime in 2023, although CEO Elon Musk frankly noted that hitting that 2023 window would require all aspects of BFR booster and spaceship development to proceed flawlessly over the next several years.
Compared to the 10+ years and $30+ billion of development SLS and Orion will have taken before their first full launch, SpaceX is targeting the first orbital BFR test flights as early as 2020 or 2021, self-admittedly optimistic deadlines that will likely slip. Still, betting against SpaceX completing its first BFR launch sometime in the early to mid-2020s for something approximating Musk’s $2-10 billion development cost seems a risky move in the context of SpaceX’s undeniable track record of proving the old-guard wrong.
- NASA’s EM-2 circumlunar voyage. (NASA)
- SpaceX’s own circumlunar trajectory, nearly identical. (SpaceX)
- SLS Block 1. (NASA)
- BFR’s spaceship and booster (now Starship and Super Heavy) separate in a mid-2018 render of the vehicle. (SpaceX)
It must be noted that the apparent alignment of both SpaceX and NASA’s first crewed circumlunar missions with new rockets and spacecraft is a fluke of chance, and the fact that it may or may not take the shape of a second race to the Moon – pitting two dramatically different ideologies and organizational approaches against each other – is purely coincidental.
However, despite the undeniable fact that NASA and SpaceX are deeply and cooperatively involved through Crew and Cargo Dragon and despite Musk’s genuine affirmations of support and admiration for the space agency, it can be almost guaranteed that the world will look on in the 2020s with the same underlying emotions and motivations that were globally present during the Apollo Program. Rather than a battle of economic and nationalistic ideologies, the New Space Race of the 2020s will pit two (publicly) amicable private and public entities against each other at the same time as they work hand-in-hand to deliver crew and cargo to the International Space Station.
- An overview of BFR’s booster and spaceship, now known as Super Heavy and Starship. (SpaceX)
- SpaceX has already completed the first of many carbon-composite sections of its prototype spaceship. (SpaceX)
- SLS’ movable launch pad is very slowly being prepared for a 2020/2021 debut. (Tom Cross)
- SLS undoubtedly has several steps up on BFR in terms of volume of hardware in work, although target launch dates are quite similar for both rockets. (NASA)
Critically, this new “race” will be fairly illusory. Thanks to the fact that the new goal of human spaceflight appears to be the sustainable exploration of the solar system, there will inherently be no Apollo-style finish line for any one company or country or agency to cross. Rather than the Apollo Program’s shortsighted economic motivations and its consequentially abrupt demise, the end-result of this new age of competition will be the establishment of humanity as a (deep) spacefaring species, be it a temporary burst of effort or a permanent human condition.
Buckle up.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
News
Tesla ‘Mad Max’ gets its first bit of regulatory attention
Tesla “Mad Max” mode has gotten its first bit of regulatory attention, as the National Highway Traffic Safety Administration (NHTSA) has asked for additional information on the Speed Profile.
A few weeks ago, Tesla officially launched a new Speed Profile for Full Self-Driving (Supervised) known as “Mad Max,” which overtook the “Hurry” mode for the fastest setting FSD offers.
Tesla launches ‘Mad Max’ Full Self-Driving Speed Profile, its fastest yet
It launched with Full Self-Driving v14.1.2, and it was no secret that the company was looking for a new mode that would cater to more aggressive driving styles.
The release notes showed the description of the Speed Profile as:
“Introduced new speed profile MAD MAX, which comes with higher speeds and more frequent lane changes than Hurry.”
It certainly lived up to its description. In our testing, it was aggressive, fast, and drove similarly to some of the more challenging traffic patterns I’ve come across.
In normal highway driving, it was one of the quicker cars on the road, while other applications saw it be a suitable version for navigating things like rush-hour traffic.
Here’s what my experience with it was:
🚨 Tesla “Mad Max” testing on FSD v14.1.2
It drives like a human being! Consistent lane changes, keeps up with quicker traffic, very refined
Well done Tesla Team pic.twitter.com/wzTucDhczA
— TESLARATI (@Teslarati) October 19, 2025
While Tesla owners have certainly enjoyed the feature and the behaviors of Mad Max, the NHTSA said it is in contact with Tesla about it, looking to gather additional information. Additionally, it said:
“The human behind the wheel is fully responsible for driving the vehicle and complying with all traffic safety laws.”
The important thing to note with Mad Max mode, along with the other Speed Profiles, is that the driver can choose whichever one they’d like, and they all cater to different driving styles.
While Mad Max is more aggressive, modes like “Sloth” and “Standard” are significantly more conservative and can be more suitable for those who are not comfortable with the faster, more spirited versions.
News
Tesla shares AI5 chip’s ambitious production roadmap details
Tesla CEO Elon Musk has revealed new details about the company’s next-generation AI5 chip, describing it as “an amazing design.”
Tesla CEO Elon Musk has revealed new details about the company’s next-generation AI5 chip, describing it as “an amazing design” that could outperform its predecessor by a notable margin. Speaking during Tesla’s Q3 2025 earnings call, Musk outlined how the chip will be manufactured in partnership with both Samsung and TSMC, with production based entirely in the United States.
What makes AI5 special
According to Musk, the AI5 represents a complete evolution of Tesla’s in-house AI hardware, building on lessons learned from the AI4 system currently used in its vehicles and data centers. “By some metrics, the AI5 chip will be 40x better than the AI4 chip, not 40%, 40x,” Musk said during the Q3 2025 earnings call. He credited Tesla’s unique vertical integration for the breakthrough, noting that the company designs both the software and hardware stack for its self-driving systems.
To streamline the new chip, Tesla eliminated several traditional components, including the legacy GPU and image signal processor, since the AI5 architecture already incorporates those capabilities. Musk explained that these deletions allow the chip to fit within a half-reticle design, improving efficiency and power management.
“This is a beautiful chip,” Musk said. “I’ve poured so much life energy into this chip personally, and I’m confident this is going to be a winner.”
Tesla’s dual manufacturing strategy for AI5
Musk confirmed that both Samsung’s Texas facility and TSMC’s Arizona plant will fabricate AI5 chips, with each partner contributing to early production. “It makes sense to have both Samsung and TSMC focus on AI5,” the CEO said, adding that while Samsung has slightly more advanced equipment, both fabs will support Tesla’s U.S.-based production goals.
Tesla’s explicit objective, according to Musk, is to create an oversupply of AI5 chips. The surplus units could be used in Tesla’s vehicles, humanoid robots, or data centers, which already use a mix of AI4 and NVIDIA hardware for training. “We’re not about to replace NVIDIA,” Musk clarified. “But if we have too many AI5 chips, we can always put them in the data center.”
Musk emphasized that Tesla’s focus on designing for a single customer gives it a massive advantage in simplicity and optimization. “NVIDIA… (has to) satisfy a large range of requirements from many customers. Tesla only has to satisfy one customer, Tesla,” he said. This, Musk stressed, allows Tesla to delete unnecessary complexity and deliver what could be the best performance per watt and per dollar in the industry once AI5 production scales.
Energy
Tesla VP hints at Solar Roof comeback with Giga New York push
The comments hint at possible renewed life for the Solar Roof program, which has seen years of slow growth since its 2016 unveiling.
Tesla’s long-awaited and way underrated Solar Roof may finally be getting its moment. During the company’s Q3 2025 earnings call, Vice President of Energy Engineering Michael Snyder revealed that production of a new residential solar panel has started at Tesla’s Buffalo, New York facility, with shipments to customers beginning in the first quarter of 2026.
The comments hint at possible renewed life for the Solar Roof program, which has seen years of slow growth since its 2016 unveiling.
Tesla Energy’s strong demand
Responding to an investor question about Tesla’s energy backlog, Snyder said demand for Megapack and Powerwall continues to be “really strong” into next year. He also noted positive customer feedback for the company’s new Megablock product, which is expected to start shipping from Houston in 2026.
“We’re seeing remarkable growth in the demand for AI and data center applications as hyperscalers and utilities have seen the versatility of the Megapack product. It increases reliability and relieves grid constraints,” he said.
Snyder also highlighted a “surge in residential solar demand in the US,” attributing the spike to recent policy changes that incentivize home installations. Tesla expects this trend to continue into 2026, helped by the rollout of a new solar lease product that makes adoption more affordable for homeowners.
Possible Solar Roof revival?
Perhaps the most intriguing part of Snyder’s remarks, however, was Tesla’s move to begin production of its “residential solar panel” in Buffalo, New York. He described the new panels as having “industry-leading aesthetics” and shape performance, language Tesla has used to market its Solar Roof tiles in the past.
“We also began production of our Tesla residential solar panel in our Buffalo factory, and we will be shipping that to customers starting Q1. The panel has industry-leading aesthetics and shape performance and demonstrates our continued commitment to US manufacturing,” Snyder said during the Q3 2025 earnings call.
Snyder did not explicitly name the product, though his reference to aesthetics has fueled speculation that Tesla may finally be preparing a large-scale and serious rollout of its Solar Roof line.
Originally unveiled in 2016, the Solar Roof was intended to transform rooftops into clean energy generators without compromising on design. However, despite early enthusiasm, production and installation volumes have remained limited for years. In 2023, a report from Wood Mackenzie claimed that there were only 3,000 operational Solar Roof installations across the United States at the time, far below forecasts. In response, the official Tesla Energy account on X stated that the report was “incorrect by a large margin.”
-
Elon Musk1 week agoSpaceX posts Starship booster feat that’s so nutty, it doesn’t even look real
-
Elon Musk6 days agoTesla Full Self-Driving gets an offer to be insured for ‘almost free’
-
News6 days agoElon Musk confirms Tesla FSD V14.2 will see widespread rollout
-
News1 week agoTesla is adding an interesting feature to its centerscreen in a coming update
-
News1 week agoTesla launches new interior option for Model Y
-
News1 week agoTesla widens rollout of new Full Self-Driving suite to more owners
-
Elon Musk7 days agoTesla CEO Elon Musk’s $1 trillion pay package hits first adversity from proxy firm
-
News5 days agoTesla might be doing away with a long-included feature with its vehicles













