News
Why The Boring Company’s $10 million dollars per mile price tag is a game changer
With The Boring Company, Elon Musk hopes to overcome the pitfalls that drive up the costs of underground rail transport construction using good old-fashioned innovation with a dash of Silicon Valley startup dust (dirt?). Currently, most U.S. local and state governments (i.e., tax payers) hand over an average of $200-$500 million dollars per mile to construct a subway system, with hundreds of millions more per mile a common occurrence and even a $1 billion dollars per mile price tag having happened a few times already. The reasons for such expense seems to be multi-faceted and stubborn: regulations, unions, and project management. So, when the Tesla CEO and Boring Company founder cited $10 million dollars as the final price of their mile-long demonstration tunnel, including internal infrastructure, lighting, comms/video, safety systems, ventilation, and tracks, he seemed to be threatening to completely upend yet another industry, this one having been at the core of transportation for nearly 200 years.
“I like trains, by the way. I really like trains a lot,” Musk assured his press audience at the company’s recent demonstration tunnel opening event. The Boring Company (TBC) began as a Twitter discussion wherein the tech mogul was venting about “soul-destroying” traffic in Los Angeles. A concept animation followed soon after (as well as hats and not-a-flamethrowers), imagining a transportation system where cars would be shuttled around at high speeds underground on electric skates. Ideas flowed, tunneling began, and the result of all those efforts went on display December 18, 2018, demo rides included. A rideable 1.14 mile tunnel had been constructed from Crenshaw Boulevard across from the Hawthorne, California headquarters of SpaceX, Musk’s private rocket company, to the 120th Street/Prairie Avenue crossroad of Hawthorne.
Around this time last year, Brian Rosenthal of the New York Times exposed several astonishing factors that added up to a $3.5 billion dollars per mile cost to construct a 3.5 mile tunnel to connect Grand Central Terminal to the Long Island Rail Road in New York City, aka the “East Side Access”. An infamous “first”, this price tag is 7 times more than the average of anywhere else in the world. A combination of trade union, construction company, and consulting firm practices, including significant staff redundancy, bred an environment ripe for cost pile-ups, and both incompetence and the lack of oversight within New York’s Metropolitan Transportation Authority (MTA) added significantly to the issue. While the specific amount of money spent made the system’s cost unique in the world, the general underlying issues were not uncommon.

New York may be an exception to the already high-cost of rail construction rule, but there’s the rub: It’s already incredibly expensive. As documented in numerous articles by Alon Levy, an independent journalist whose 2011 blog post on the topic inspired the research that eventually led to the Times piece, $100-$500 million dollars per mile is a typical cost for building railed transporation worldwide. “These are crazy numbers,” Musk exclaimed at the tunnel opening event after summarizing the multiple billions of dollars short tunneling projects cost to complete in L.A. and New York. If the building cost wasn’t enough sticker shock, it gets worse: The daily operating costs of rail systems in the U.S. exceed the amount earned.
Another metric that is used to estimate the true cost of rail construction is cost per rider. After the time and money is spent building a public rail system, it needs to be staffed and repaired, expenses which are difficult to match with revenue without a large number of riders. As cited by Alon Levy in an article Elon Musk tweeted recently, New York’s Second Avenue Subway will cost $25,000 per rider to complete 200,000 trips per day. In Los Angeles, the Purple Line will cost $45,000 per rider for 150,000 trips per day as will Boston’s Green Line Extension for 52,000 trips. Looking at rider fares, New York loses a bit less than $1 per ride taken and L.A. loses over $2 per ride.
So, how will The Boring Company “do” underground transportation system building better than the traditional, money-heavy methods? To put it simply: Be efficient.
Building a better mouse snail trap
They’ve designed their tunneling machines to bore faster and more efficiently. While the first generation machine is conventional and named Godot after the Samuel Backett play, Waiting for Godot due to the length of time it took to understand the machine’s functionality and assemble it, two other improved generations will be part of the Boring family.
The second generation machine, named “Line-Storm” after a Robert Frost love poem with the same phrase in its title that’s about overcoming hardships, is a conventional boring machine that has been highly modified. It uses a redesigned cutting head that takes in significantly more dirt and is 2 times faster than Godot.
The third generation machine, named “Prufrock”, will be a ground-up, fully designed TBC machine that’s 15 times better than the next best boring system, and that means 15 times faster than the next best machine out there, period.
Improved construction practices and project management
During construction, TBC reinforced tunnel segments as they were dug, those reinforcements being created on-site out of materials comprising 70% of the dirt dug and the remaining 30% primarily cement. This recycled material, as-you-go system enabled quick construction with cost efficiency, the demo tunnel taking 2 years almost to the day from Musk’s initial Tweet that inspired the undertaking.
Function-focused engineering
TBC’s tunnels are smaller than the typical underground rail system because they’re designed for specific types of vehicles that are smaller than traditional transports (autonomous electrics) and don’t require extra space for maintenance. This in itself reduces costs by 3-4 times.
Although The Boring Company has the advantage of being the new kid on the block whose founder has a unique background in shaking up traditional systems, there may still be a few hangups that will never quite go away. Anything involving the general public, especially public transit, will have serious bureaucracy involved. To achieve the company’s mile-long demo track feat, it had to face the extreme regulatory environment of Los Angeles. California overall has earthquakes, is a methane zone, and has oil and gas fields, all which add to a long list of rules to be followed for any construction projects to commence. “The amount of paperwork we had to go through to do this was enormous,” Musk said at TBC’s recent event.

Additionally, a lawsuit filed last year by the Brentwood Residents Coalition and the Sunset Coalition objecting to the company’s Sepulveda tunnel eventually led to their abandonment of that leg of the demonstration project. The coalitions primarily alleged that TBC was skirting environmental review requirements by “chopping large projects into smaller pieces that taken individually appear to have no significant environmental impacts”, citing a conceptual map the company released showing its planned Los Angeles tunnel system. Musk hasn’t let these hurdles damage his confidence, however. While speaking with press at TBC’s opening event, he added his own spin to the Broadway mantra (and Frank Sinatra hit, “New York, New York”) about “making it” there : “If you can build a tunnel in L.A., you can build it anywhere.”
As CEO of an innovative electric car company and a commercial rocket company set on sending humans to Mars, Musk is known as an industry disruptor. Even if the cost of boring tunnels for public transportation projects rises somewhat above the $10 million per mile price demonstrated with the LA/Hawthorne tunnel, it will be still be well under the typical costs in the boring industry. It’s obvious already that a potential disruption is underway. “We have people hounding us to invest nonstop…it’s kinda ridiculous how much interest we’ve had in investing in Boring Company,” Musk stated at the tunnel unveiling. Steve Davis, president of the company, added that they receive “greater than 5 and less than 20 requests per week from different municipalities and stakeholders.”
Also in the works for the tunneling newcomers: A transport line connecting downtown Chicago to Chicago O’Hare International Airport. The company won a contract to build a transport system for the city’s fliers in June 2017, and ground breaking is planned for sometime in the next few months. The Boring Company’s calendar still includes plans for an “urban loop system” as well, an underground network of pod-type buses for pedestrians and cyclists connecting numerous points throughout city centers.
Elon Musk
Tesla reveals major info about the Semi as it heads toward ‘mass production’
Some information, like trim levels and their specs were not revealed by Tesla, but now that the Semi is headed toward mass production this year, the company finally revealed those specifics.
Tesla has revealed some major information about the all-electric Semi as it heads toward “mass production,” according to CEO Elon Musk.
The Semi has been working toward a wider production phase after several years of development, pilot programs, and the construction of a dedicated production facility that is specifically catered to the manufacturing of the vehicle.
However, some information, like trim levels and their specs were not revealed by Tesla, but now that the Semi is headed toward mass production this year, the company finally revealed those specifics.
Tesla Semi undergoes major redesign as dedicated factory preps for deliveries
Tesla plans to build a Standard Range and Long Range Trim level of the Semi, and while the range is noted in the company’s newly-released spec list, there is no indication of what battery size will be equipped by them. However, there is a notable weight difference between the two of roughly 3,000 lbs, and the Long Range configuration has a lightning-fast peak charging speed of 1.2 MW.
This information is not available for the Standard Range quite yet.
The spec list is as follows:
- Standard Range:
- 325 miles of range (at 82,000 lbs gross combination weight
- Curb Weight: <20,000
- Energy Consumption: 1.7 kWh per mile
- Powertrain: 3 independent motors on rear axles
- Charging: Up to 60% of range in 30 minutes
- Charge Type: MCS 3.2
- Drive Power: Up to 800 kW
- ePTO (Electric Power Take Off): Up to 25 kW
- Long Range:
- Range: 500 miles (at 82,000 lbs gross combination weight)
- Curb Weight: 23,000 lbs
- Energy Consumption: 1.7 kWh per mile
- Powertrain: 3 independent motors on rear axles
- Charging: Up to 60% of range in 30 minutes
- Charge Type: MCS 3.2
- Peak charging speed: 1.2MW (1,200kW)
- Drive Power: Up to 800 kW
- ePTO (Electric Power Take Off): Up to 25 kW
It is important to keep in mind that the Semi is currently spec’d for local runs, and Tesla has not yet released or developed a sleeper cabin that would be more suitable for longer trips, cross-country hauls, and overnight travel.
Tesla Semi sleeper section and large side storage teased in new video
Instead, the vehicle will be initially used for regional deliveries, as it has in the pilot programs for Pepsi Co. and Frito-Lay for the past several years.
It will enter mass production this year, Musk confirmed on X over the weekend.
Now that the company’s dedicated Semi production facility in Sparks, Nevada, is standing, the timeline seems much more realistic as the vehicle has had its mass manufacturing date adjusted on several occasions.
News
Ferrari Luce EV: Italian supercar maker reveals interior and interface design
Ferrari, the Italian supercar maker, has revealed the name, interior, and interface design of its first-ever electric vehicle project, the Luce, initiating a new chapter in the rich history of the company’s automotive books.
This is the first time Ferrari has revealed such intimate details regarding its introductory EV offering, which has been in the realm of possibility for several years.
As more companies continue to take on EV projects, and some recede from them, supercar companies like Ferrari and Lamborghini are preparing to offer electric powertrains, offering super-fast performance and a new era of speed and acceleration.
Luce – a New Chapter in Ferrari
The company said that the name Luce is “more than a name. It is a vision.” Instead of looking at its first EV offering as a means to enter a new era of design, engineering, and imagination. The company did not want to compromise any of its reputation, high standards, or performance with this new project. It sees it as simply a page turn, and not the closing of a book:
“This new naming strategy reflects how the Ferrari Luce marks a significant addition to the Prancing Horse’s line-up, embodying the seamless expression of tradition and innovation. With its cutting-edge technology, unique design, and best-in-class driving thrills, it unites Ferrari’s racing heritage, the timeless spirit of its sports cars, and the evolving reality of contemporary lifestyles. It testifies to Ferrari’s determination to go beyond expectations: to imagine the future, and to dare. Because leading means illuminating the path ahead – and Luce embodies that mindset.”
Ferrari Luce Design
Ferrari collaborated with LoveFrom, a creative collective founded by Sir Jony Ive and Marc Newson. The pair has been working with Ferrari for five years on the Luce design; everything from materials, ergonomics, interface, and user experience has been designed by the two entities.
The big focus with the interior was to offer “a first, tangible insight into the design philosophy…where innovation meets craftsmanship and cutting-edge design. The team focused on perfecting and refining every solution to its purest form — not to reinvent what already works, but to create a new, carefully considered expression of Ferrari.”
RELATED:
Ferrari CEO compliments Tesla for shaking up the automotive industry
The company also said:
“Ultimately, the design of the Ferrari Luce’s interior is a synthesis of meticulous craftsmanship, respect for tradition, and thoughtful innovation. It offers a new choice for Ferrari enthusiasts – one that honours the past while embracing the future, and exemplifies the brand’s enduring commitment to quality, performance, and cultural significance.”
The appearance of the elements that make up the interior are both an ode to past designs, like the steering wheel, which is a reinterpretation of the iconic 1950s and 1960s wooden three-spoke Nardi wheel, and fresh, new designs, which aim to show the innovation Ferrari is adopting with this new project.
Interior Highlights
Steering Wheel
The Ferrari Luce is a shout-out to the Nardi wheel from the 1950s and 60s. It is constructed of 100% recycled aluminum, and the alloy was developed specifically for the vehicle to “ensure mechanical resistance and a superb surface quality for the anodisation process.”
It weighs 400 grams less than a standard Ferrari steering wheel:

Credit: Ferrari
It features two analogue control modules, ensuring both functionality and clarity, Ferrari said. The carmaker drew inspiration from Formula One single-seaters, and every button has been developed to provide “the most harmonious combination of mechanical and acoustic feedback based on more than 20 evaluation tests with Ferrari test drivers.”
Instrument Cluster and Displays
There are three displays in the Luce — a driver binnacle, control panel, and rear control panel, which have all been “meticulously designed for clarity and purpose.”
The binnacle moves with the steering wheel and is optimized for the driver’s view of the instrumentation and supporting driver performance.
- Credit: Ferrari
- Credit: Ferrari
Displays are crafted by Samsung and were specifically designed for the car, using a “world first – three large cutouts strategically reveal the information generated by a second display behind the top panel, creating a fascinating visual depth that captures the eye.”
Samsung Display engineers created an ultra-light, ultra-thin OLED panel for the vehicle.

Credit: Ferrari
Pricing is still what remains a mystery within the Luce project. Past reports have speculated that the price could be at least €500,000, or $535,000.
Elon Musk
Elon Musk pivots SpaceX plans to Moon base before Mars
The shift, Musk explained, is driven by launch cadence and the urgency of securing humanity’s long-term survival beyond Earth, among others.
Elon Musk has clarified that SpaceX is prioritizing the Moon over Mars as the fastest path to establishing a self-growing off-world civilization.
The shift, Musk explained, is driven by launch cadence and the urgency of securing humanity’s long-term survival beyond Earth, among others.
Why the Moon is now SpaceX’s priority
In a series of posts on X, Elon Musk stated that SpaceX is focusing on building a self-growing city on the Moon because it can be achieved significantly faster than a comparable settlement on Mars. As per Musk, a Moon city could possibly be completed in under 10 years, while a similar settlement on Mars would likely require more than 20.
“For those unaware, SpaceX has already shifted focus to building a self-growing city on the Moon, as we can potentially achieve that in less than 10 years, whereas Mars would take 20+ years. The mission of SpaceX remains the same: extend consciousness and life as we know it to the stars,” Musk wrote in a post on X.
Musk highlighted that launch windows to Mars only open roughly every 26 months, with a six-month transit time, whereas missions to the Moon can launch approximately every 10 days and arrive in about two days. That difference, Musk stated, allows SpaceX to iterate far more rapidly on infrastructure, logistics, and survival systems.
“The critical path to a self-growing Moon city is faster,” Musk noted in a follow-up post.
Mars still matters, but runs in parallel
Despite the pivot to the Moon, Musk stressed that SpaceX has not abandoned Mars. Instead, Mars development is expected to begin in about five to seven years and proceed alongside the company’s lunar efforts.
Musk explained that SpaceX would continue launching directly from Earth to Mars when possible, rather than routing missions through the Moon, citing limited fuel availability on the lunar surface. The Moon’s role, he stated, is not as a staging point for Mars, but as the fastest achievable location for a self-sustaining off-world civilization.
“The Moon would establish a foothold beyond Earth quickly, to protect life against risk of a natural or manmade disaster on Earth,” Musk wrote.

