News
Dissecting Tesla Model 3’s 2170 lithium ion battery cell, what’s inside?
A teardown video featuring Tesla Model 3’s 2170 lithium-ion battery cell was recently uploaded on YouTube, showing the components of the cylindrical cell and how it stacks up against the Model S and Model X’s 18650 battery cell.
Aries RC, a channel dedicated to battery improvements in the remote control aircraft market, indicated that they acquired a 2170 lithium-ion cell from Tesla’s Gigafactory in Nevada. The host noted that the first thing he did was to connect the battery to a resistor, in order to completely drain the cell. Next, he made a cut at the positive terminal of the battery unit to expose a plastic dielectric barrier on the cell. This barrier is utilized by Tesla as a means to prevent the jelly roll inside from physically touching the top of the battery, which would cause a short circuit. As noted by the YouTube channel’s host, the negative terminal of the 2170 lithium-ion cell also features a similar dielectric barrier.
The Model 3’s 2170 cell features a thin layer of insulation on its interior, which, according to the RC enthusiast, is an outer layer of material that protects the cell wall’s integrity during a thermal runaway. In instances when the lithium-ion cell does heat up, however, Tesla has implemented a safety system in the form of three small cooling holes at the top of the battery. These small holes are about 0.5 mm wide, and are designed to vent out gases when the cell reaches high temperatures.
The jelly roll of the 2170 battery is wrapped in a copper sheet, which acts as a ground for the battery. A grounding strip is also attached to the copper strip using tap welding, which, according to the YouTube channel’s host, is particularly impressive, since tap welding is notoriously difficult to accomplish on thin pieces of metal.
The jelly roll of the Model 3’s battery cell features a lithium-nickel-cobalt-aluminum oxide that’s responsible for storing energy in the battery. Fully unrolled, the strip fitted with the compound measured roughly 32 inches long, roughly a third longer than the strip in Tesla’s 18650 battery, which is roughly 24 inches long.
RELATED: Watch this Tesla Model S battery teardown performed by veteran EV modders
As could be seen in a side-by-side comparison of the jelly rolls of the 2170 and 18650 cells, Tesla’s newest form factor 2170 cell features a roll that is significantly longer and thicker than the latter. Overall, the YouTube host suggested that Tesla seems to be accurate in its estimates that the 2170 cell carries roughly 30 percent more charge than the 18650 lithium-ion cell in the Model S and X.
Tesla uses thousands of 2170 cells to enable its mass market Long Range Model 3 to travel up to 310 miles on a single charge. Produced in partnership with Panasonic at the Nevada Gigafactory, Tesla’s 2170 lithium-ion battery modules proved to be one of the sources of the Model 3’s production bottlenecks last year. As revealed by recent building permits, however, Tesla is currently conducting large-scale improvements to the Gigafactory, aimed at automating its battery module production line.
Apart from the Model 3, Tesla also uses its 2170 lithium-ion cell for its Powerpack and Powerwall battery solutions. As confirmed by Tesla CEO Elon Musk through Twitter, however, the 2170 cells will not be making their way to the Model S and X, at least as of writing.
News
Tesla is not sparing any expense in ensuring the Cybercab is safe
Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.
The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility.
Intensive crash tests
As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays.
Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads.
Prioritizing safety
With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.
Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.
Elon Musk
Tesla’s Elon Musk gives timeframe for FSD’s release in UAE
Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year.
Tesla CEO Elon Musk stated on Monday that Full Self-Driving (Supervised) could launch in the United Arab Emirates (UAE) as soon as January 2026.
Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year.
Musk’s estimate
In a post on X, UAE-based political analyst Ahmed Sharif Al Amiri asked Musk when FSD would arrive in the country, quoting an earlier post where the CEO encouraged users to try out FSD for themselves. Musk responded directly to the analyst’s inquiry.
“Hopefully, next month,” Musk wrote. The exchange attracted a lot of attention, with numerous X users sharing their excitement at the idea of FSD being brought to a new country. FSD (Supervised), after all, would likely allow hands-off highway driving, urban navigation, and parking under driver oversight in traffic-heavy cities such as Dubai and Abu Dhabi.
Musk’s comments about FSD’s arrival in the UAE were posted following his visit to the Middle Eastern country. Over the weekend, images were shared online of Musk meeting with UAE Defense Minister, Deputy Prime Minister, and Dubai Crown Prince HH Sheikh Hamdan bin Mohammed. Musk also posted a supportive message about the country, posting “UAE rocks!” on X.
FSD recognition
FSD has been getting quite a lot of support from foreign media outlets. FSD (Supervised) earned high marks from Germany’s largest car magazine, Auto Bild, during a test in Berlin’s challenging urban environment. The demonstration highlighted the system’s ability to handle dense traffic, construction sites, pedestrian crossings, and narrow streets with smooth, confident decision-making.
Journalist Robin Hornig was particularly struck by FSD’s superior perception and tireless attention, stating: “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention.” Only one intervention was needed when the system misread a route, showcasing its maturity while relying on vision-only sensors and over-the-air learning.
News
Tesla quietly flexes FSD’s reliability amid Waymo blackout in San Francisco
“Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.
Tesla highlighted its Full Self-Driving (Supervised) system’s robustness this week by sharing dashcam footage of a vehicle in FSD navigating pitch-black San Francisco streets during the city’s widespread power outage.
While Waymo’s robotaxis stalled and caused traffic jams, Tesla’s vision-only approach kept operating seamlessly without remote intervention. Elon Musk amplified the clip, highlighting the contrast between the two systems.
Tesla FSD handles total darkness
The @Tesla_AI account posted a video from a Model Y operating on FSD during San Francisco’s blackout. As could be seen in the video, streetlights, traffic signals, and surrounding illumination were completely out, but the vehicle drove confidently and cautiously, just like a proficient human driver.
Musk reposted the clip, adding context to reports of Waymo vehicles struggling in the same conditions. “Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.
Musk and the Tesla AI team’s posts highlight the idea that FSD operates a lot like any experienced human driver. Since the system does not rely on a variety of sensors and a complicated symphony of factors, vehicles could technically navigate challenging circumstances as they emerge. This definitely seemed to be the case in San Francisco.
Waymo’s blackout struggles
Waymo faced scrutiny after multiple self-driving Jaguar I-PACE taxis stopped functioning during the blackout, blocking lanes, causing traffic jams, and requiring manual retrieval. Videos shared during the power outage showed fleets of Waymo vehicles just stopping in the middle of the road, seemingly confused about what to do when the lights go out.
In a comment, Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.”
A company spokesperson also shared some thoughts about the incidents. “Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”