Connect with us

News

Mars travelers can use ‘Star Trek’ Tricorder-like features using smartphone biotech: study

Published

on

Plans to take humans to the Moon and Mars come with numerous challenges, and the health of space travelers is no exception. One of the ways any ill-effects can be prevented or mitigated is by detecting relevant changes in the body and the body’s surroundings, something that biosensor technology is specifically designed to address on Earth. However, the small size and weight requirements for tech used in the limited habitats of astronauts has impeded its development to date.

A recent study of existing smartphone-based biosensors by scientists from Queen’s University Belfast (QUB) in the UK identified several candidates under current use or development that could be also used in a space or Martian environment. When combined, the technology could provide functionality reminiscent of the “Tricorder” devices used for medical assessments in the Star Trek television and movie franchises, providing on-site information about the health of human space travelers and biological risks present in their habitats.

Biosensors focus on studying biomarkers, i.e., the body’s response to environmental conditions. For example, changes in blood composition, elevations of certain molecules in urine, heart rate increases or decreases, and so forth, are all considered biomarkers. Health and fitness apps tracking general health biomarkers have become common in the marketplace with brands like FitBit leading the charge for overall wellness sensing by tracking sleep patterns, heart rate, and activity levels using wearable biosensors. Astronauts and other future space travelers could likely use this kind of tech for basic health monitoring, but there are other challenges that need to be addressed in a compact way.

The projected human health needs during spaceflight have been detailed by NASA on its Human Research Program website, more specifically so in its web-based Human Research Roadmap (HRR) where the agency has its scientific data published for public review. Several hazards of human spaceflight are identified, such as environmental and mental health concerns, and the QUB scientists used that information to organize their study. Their research produced a 20-page document reviewing the specific inner workings of the relevant devices found in their searches, complete with tables summarizing each device’s methods and suitability for use in space missions. Here are some of the highlights.

Advertisement
A chart showing the classification of scientific articles about relevant smartphone-based biosensors used in the Queen’s University Belfast study. | Credit: Biosensors/Queen’s University Belfast

Risks in the Spacecraft Environment

During spaceflight, the environment is a closed system that has a two-fold effect: One, the immune system has been shown to decrease its functionality in long-duration missions, specifically by lowering white blood cell counts, and two, the weightless and non-competitive environment make it easier for microbes to transfer between humans and their growth rates increase. In one space shuttle era study, the number of microbial cells in the vehicle able to reproduce increased by 300% within 12 days of being in orbit. Also, certain herpes viruses, such as those responsible for chickenpox and mononucleosis, have been reactivated under microgravity, although the astronauts typically didn’t show symptoms despite the presence of active viral shedding (the virus had surfaced and was able to spread).

Frequent monitoring of the spacecraft environment and the crew’s biomarkers is the best way to mitigate these challenges, and NASA is addressing these issues to an extent with traditional instruments and equipment to collect data, although often times the data cannot be processed until the experiments are returned to Earth. An attempt has also been made to rapidly quantify microorganisms aboard the International Space Station (ISS) via a handheld device called the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS). However, this device cannot distinguish between microorganism species yet, meaning it can’t tell the difference between pathogens and harmless species. The QUB study found several existing smartphone-based technologies generally developed for use in remote medical care facilities that could achieve better identification results.

NASA astronaut Karen Nyberg uses a fundoscope to image her eye while in orbit to study Visual Impairment Intracranial Pressure (VIIP) Syndrome. Smaller 3D printed retinal imaging adaptors for smartphones are being developed to perform the testing done by large devices similar to the instrument used here. | Credit: NASA

One of the devices described was a spectrometer (used to identify substances based on the light frequency emitted) which used the smartphone’s flashlight and camera to generate data that was at least as accurate as traditional instruments. Another was able to identify concentrations of an artificial growth hormone injected into cows called recominant bovine somatrotropin (rBST) in test samples, and other systems were able to accurately detect cyphilis and HIV as well as the zika, chikungunya, and dengue viruses. All of the devices used smartphone attachments, some of them with 3D-printed parts. Of course, the types of pathogens detected are not likely to be common in a closed space habitat, but the technology driving them could be modified to meet specific detection needs.

The Stress of Spaceflight

A group of people crammed together in a small space for long periods of time will be impacted by the situation despite any amount of careful selection or training due to the isolation and confinement. Declines in mood, cognition, morale, or interpersonal interaction can impact team functioning or transition into a sleep disorder. On Earth, these stress responses may seem common, or perhaps an expected part of being human, but missions in deep space and on Mars will be demanding and need fully alert, well-communicating teams to succeed. NASA already uses devices to monitor these risks while also addressing the stress factor by managing habitat lighting, crew movement and sleep amounts, and recommending astronauts keep journals to vent as needed. However, an all-encompassing tool may be needed for longer-duration space travels.

As recognized by the QUB study, several “mindfulness” and self-help apps already exist in the market and could be utilized to address the stress factor in future astronauts when combined with general health monitors. For example, the popular FitBit app and similar products collect data on sleep patterns, activity levels, and heart rates which could potentially be linked to other mental health apps that could recommend self-help programs using algorithms. The more recent “BeWell” app monitors physical activity, sleep patterns, and social interactions to analyze stress levels and recommend self-help treatments. Other apps use voice patterns and general phone communication data to assess stress levels such as “StressSense” and “MoodSense”.

A Tricorder-like setup is imagined by scientists at Queens University Belfast, utilizing the functionalities of existing smartphone-based biosensors. | Credit: Biosensors/Queens University Belfast

Advances in smartphone technology such as high resolution cameras, microphones, fast processing speed, wireless connectivity, and the ability to attach external devices provide tools that can be used for an expanding number of “portable lab” type functionalities. Unfortunately, though, despite the possibilities that these biosensors could mean for human spaceflight needs, there are notable limitations that would need to be overcome in some of the devices. In particular, any device utilizing antibodies or enzymes in its testing would risk the stability of its instruments thanks to radiation from galactic cosmic rays and solar particle events. Biosensor electronics might also be damaged by these things as well. Development of new types of shielding may be necessary to ensure their functionality outside of Earth and Earth orbit or, alternatively, synthetic biology could also be a source of testing elements genetically engineered to withstand the space and Martian environments.

The interest in smartphone-based solutions for space travelers has been garnering more attention over the years as tech-centric societies have moved in the “app” direction overall. NASA itself has hosted a “Space Apps Challenge” for the last 8 years, drawing thousands of participants to submit programs that interpret and visualize data for greater understanding of designated space and science topics. Some of the challenges could be directly relevant to the biosensor field. For example, in the 2018 event, contestants are asked to develop a sensor to be used by humans on Mars to observe and measure variables in their environments; in 2017, contestants created visualizations of potential radiation exposure during polar or near-polar flight.

Advertisement

While the QUB study implied that the combination of existing biosensor technology could be equivalent to a Tricorder, the direct development of such a device has been the subject of its own specific challenge. In 2012, the Qualcomm Tricorder XPRIZE competition was launched, asking competitors to develop a user-friendly device that could accurately diagnose 13 health conditions and capture 5 real-time health vital signs. The winner of the prize awarded in 2017 was Pennsylvania-based family team called Final Frontier Medical Devices, now Basil Leaf Technologies, for their DxtER device. According to their website, the sensors inside DxtER can be used independently, one of which is in a Phase 1 Clinical Trial. The second place winner of the competition used a smartphone app to connect its health testing modules and generate a diagnosis from the data acquired from the user.

The march continues to develop the technology humans will need to safely explore regions beyond Earth orbit. Space is hard, but it was hard before we went there the first time, and it was hard before we put humans on the moon. There may be plenty of challenges to overcome, but as the Queen’s University Belfast study demonstrates, we may already be solving them. It’s just a matter of realizing it and expanding on it.

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

Elon Musk

Elon Musk doubles down on Tesla Cybercab timeline once again

“Cybercab, which has no pedals or steering wheel, starts production in April,” Musk said.

Published

on

Credit: @JT59052914/X

CEO Elon Musk doubled down once again on the timeline of production for the Tesla Cybercab, marking yet another example of the confidence he has in the company’s ability to meet the aggressive timeline for the vehicle.

It is the third time in the past six months that Musk has explicitly stated Cybercab will enter production in April 2026.

On Monday morning, Musk reiterated that Cybercab will enter its initial manufacturing phase in April, and that it would not have any pedals or a steering wheel, two things that have been speculated as potential elements of the vehicle, if needed.

Musk has been known to be aggressive with timelines, and some products have been teased for years and years before they finally come to fruition.

One of perhaps the biggest complaints about Musk is the fact that Tesla does not normally reach the deadlines that are set: the Roadster, Semi, and Unsupervised Full Self-Driving suite are a few of those that have been given “end of this year” timelines, but have not been fulfilled.

Nevertheless, many are able to look past this as part of the process. New technology takes time to develop, but we’d rather not hear about when, and just the progress itself.

Advertisement

However, the Cybercab is a bit different. Musk has said three times in the past six months that Cybercab will be built in April, and this is something that is sort of out of the ordinary for him.

In December 2025, he said that Tesla was “testing the production system” of the vehicle and that “real production ramp starts in April.

Elon Musk shares incredible detail about Tesla Cybercab efficiency

On January 23, he said that “Cybercab production starts in April.” He did the same on February 16, marking yet another occasion that Musk has his sights set on April for initial production of the vehicle.

Advertisement

Musk has also tempered expectations for the Cybercab’s initial production phase. In January, he noted that Cybercab would be subjected to the S-curve-type production speed:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Cybercab will be a huge part of Tesla’s autonomous ride-sharing plans moving forward.

Advertisement
Continue Reading

Elon Musk

Tesla owners explore potential FSD pricing options as uncertainty looms

We asked Tesla owners what the company should price Full Self-Driving moving forward, as now it’s going to be subscription-based. There were some interesting proposals.

Published

on

Credit: Tesla

Tesla is starting the process of removing the ability to purchase the Full Self-Driving suite outright, as it pulled the purchase option in the United States over the weekend.

However, there has been some indication by CEO Elon Musk that the price of the subscription will increase as the suite becomes more robust. But Tesla finds itself in an interesting situation with this: the take rate for Full Self-Driving at $99 per month is about 12 percent, and Musk needs a significant increase in this rate to reach a tranche in his new compensation package.

This leaves Tesla and owners in their own respective limbos: Tesla needs to find a price that will incentivize consumers to use FSD, while owners need Tesla to offer something that is attractive price-wise.

We asked Tesla owners what the company should price Full Self-Driving moving forward, as now it’s going to be subscription-based. There were some interesting proposals.

Advertisement

Price Reduction

Although people are willing to pay the $99 per month for the FSD suite, it certainly is too high for some owners. Many suggested that if Tesla would back down the price to $49, or somewhere around that region, many owners would immediately subscribe.

Others suggested $69, which would make a lot of sense considering Musk’s obsession with that number.

Different Pricing for Supervised and Unsupervised

With the release of the Unsupervised version of Full Self-Driving, Tesla has a unique opportunity to offer pricing for different attention level requirements.

Unsupervised Full Self-Driving would be significantly more expensive, but not needed by everyone. Many people indicate they would still like to drive their cars manually from time to time, but others said they’d just simply be more than okay with only having Supervised FSD available in their cars.

Time-Based Pricing

Tesla could price FSD on a duration-based pricing model, including Daily, Weekly, Monthly, and Annual rates, which would incentivize longer durations with better pricing.

Annually, the rate could be $999 per year, while Monthly would stay at $99. However, a Daily pass of FSD would cost somewhere around $10, while a $30 per week cost seems to be ideal.

Advertisement

These all seem to be in line with what consumers might want. However, Tesla’s attitude with FSD is that it is the future of transportation, and with it offering only a Monthly option currently, it does not seem as if it will look as short-term as a Daily pass.

Tiered Pricing

This is perhaps the most popular option, according to what we’ve seen in comments and replies.

This would be a way to allow owners to pick and choose which FSD features they would like most and pay for them. The more features available to you, the more it costs.

For example, if someone only wanted Supervised driving and Autopark, it could be priced at $50 per month. Add in Summon, it could be $75.

Advertisement

This would allow people to pick only the features they would use daily.

Continue Reading

News

Tesla leaves a single loophole to purchase Full Self-Driving outright

Published

on

Credit: Tesla

Tesla has left a single loophole to purchase Full Self-Driving outright. On Sunday, the option officially disappeared from the Online Design Studio in the United States, as Tesla transitioned to a Subscription-only purchasing plan for the FSD suite.

However, there is still one way to get the Full Self-Driving suite in an outright manner, which would not require the vehicle owner to pay monthly for the driver assistance program — but you have to buy a Model S or Model X.

Months ago, Tesla launched a special “Luxe Package” for the Model S and Model X, which included Full Self-Driving for the life of the vehicle, as well as free Supercharging at over 75,000 locations, as well as free Premium Connectivity, and a Four-Year Premium Service package, which includes wheel and tire protection, windshiel protection, and recommended maintenance.

It would also be available through the purchase of a Cyberbeast, the top trim of the Cybertruck lineup.

This small loophole would allow owners to avoid the monthly payment, but there have been some changes in the fine print of the program, as Tesla has added that it will not be transferable to subsequent vehicle owners or to another vehicle.

Advertisement

This goes for the FSD and the Supercharging offers that come with the Luxe Package.

For now, Tesla still has the Full Self-Driving subscription priced at $99 per month. However, that price is expected to increase over the course of some time, especially as its capabilities improve. Tesla seems to be nearing Unsupervised FSD based on Musk’s estimates for the Cybercab program.

There is the potential that Tesla offers both Unsupervised and Supervised FSD for varying prices, but this is not confirmed.

In other countries, Tesla has pushed back the deadline to purchase the suite outright, as in Australia, it has been adjusted to March 31.

Advertisement
Continue Reading