

Space
NASA’s next Mars rover will pave the way for humans
NASA’s Mars 2020 rover is scheduled to land on the red planet in February 2021, and when it does, it will touch down in Jezero Crater, the site of an ancient lake that existed 3.5 billion years ago. The next generation rover, which will get an official name soon, will build on the success of the robotic explorers who came before it by collecting the first samples of Mars for a future return to Earth.
But the new rover will also lay the groundwork for future human exploration by testing new technologies.
The Mars 2020 rover, which looks nearly identical to the Curiosity rover that landed in 2012, will begin its mission exploring Jezero Crater. The six-wheeled rover is equipped with a suite of instruments designed to help it look for signs of life called biosignatures.
Artist rendition depicting the early Martian environment (right) versus the Mars we see today (left). Credit: NASA’s Goddard Space Flight Center
NASA believes that Mars was habitable sometime in its past. The inhospitable desert-like planet we see today was not always the case. Mars’ once ample atmosphere eroded over time, stripped away by solar particles, resulting in the thin atmosphere we see today.
But so far, we haven’t been able to detect any real signs of ancient life yet. The rover’s team thinks that its specialized suite of instruments will change that.
The twin Mars Exploration Rovers (Spirit and Opportunity) were tasked with finding evidence of water, and they were successful right out of the gate. The Mars Science Laboratory (aka Curiosity) was designed to understand habitability and if the conditions were right for life. Now, the Mars 2020 rover will take that one step further and search for actual signs of life.

Artist rendition depicting the early Martian environment (right) versus the Mars we see today (left). Credit: NASA’s Goddard Space Flight Center
The 2020 rover will do so by drilling into its surroundings and extracting samples that will be returned to Earth at a later time. Returning the samples is a challenge that NASA is already starting to tackle. The agency estimates that the earliest it can send a mission to fetch the rover’s samples would be some time around 2026 or 2027.
In the meantime, 2020 will be busy sciencing the heck out of Mars to search for microbial life as well as testing out technologies that future human missions will rely on.
Here’s how four of those instruments will work.
Terrain Relative Navigation
Landing on Mars is tricky. To date, only about half of the missions attempted have successfully touched down on the red planet. The 2020 rover will be equipped with a specialized feature to help it avoid any potential hazards in the landing zone.
Past missions, like Curiosity, needed a landing spot that was free of debris (like rocks, boulders, etc). But 2020 will be able to navigate around them. That’s because the rover is equipped with a unique lander vision system. This system take pictures during the parachute descent stage. It then compares those images to an onboard map.

A view of how the terrain-relative navigation works. Credit: NASA/JPL_Caltech
The computer matches the map (which is created from orbital imagery), to create a guide that can identify landmarks such as craters and mountains.
The system then ranks landing sites based on safety, and can even identify a hazard. The Mars 2020 mission will be the first to test out this new system. If all goes well, it will be used on future missions, including human missions to Mars and even the moon.
MOXIE
Astronauts traveling to Mars will need oxygen to breathe and to use as rocket fuel. However, hauling it with the other cargo is expensive and not a viable solution. The Mars 2020 rover is equipped with an instrument on called the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE for short).
MOXIE will convert carbon dioxide (a gas that’s abundant on Mars) into the oxygen, which astronauts can use as needed. 2020 is equipped with a small, prototype version of the equipment needed for future human missions.
The team will study how the experiment performs and use that data to scale up the technology to use on subsequent missions. But how will it work?
MOXIE can only run for a few hours at a time, and only about once a month. (That’s because the system uses a full day’s worth of rover power each time it runs.) Humans use about 20 grams per hour of oxygen and MOXIE can only produce about half of that.
In order to support a crew of 4-6 astronauts and be able to generate propellant, future iterations of MOXIE will need to produce about 200 times that amount of oxygen.
MEDA
The Mars Environmental Dynamics Analyzer, aka MEDA, is a suite of sensors designed to study the Martian weather, as well as dust and radiation and how they change over the Martian seasons.
NASA is trying to better understand dust storms and other Martian weather phenomenon. Credit: NASA
Day and nighttime temperatures on Mars can fluctuate by as much as 80 or 90 degrees. MEDA will help scientists track those changes as well as measure radiation from the surface, to understand how much the sun heats the air. This solar heating causes changes in the Martian wind and can help scientists better understand the Martian water cycle.
Understanding the current weather patterns and environment could also lead to a better understanding of Mars’s history and shed light on how it transitioned from a warm, habitable planet into the dusty, cold desert we see today.
RIMFAX
The Mars 2020 rover will be equipped with a ground-penetrating radar instrument: Radar Imager for Mars’ Subsurface Experiment, or RIMFAX.
The Korolev crater on Mars as seen by Mars Express. Credit: ESA/DLR/FU Berlin
Scientists hope that RIMAX will help them study the history of Jezero Crater by peering below the surface. With the instrument’s help, scientists will be able to look at subsurface rock and ice. To date, only orbital observations have been made of the Martian polar ice, but this will increase our understanding of the planet’s inner geology.
The Mars 2020 rover is scheduled to launch in July of 2020, and will land on the Martian surface six months later. If all goes according to plan, we may finally be able to answer the question of whether or not Mars once hosted life.
Elon Musk
SpaceX to decommission Dragon spacecraft in response to Pres. Trump war of words with Elon Musk
Elon Musk says SpaceX will decommission Dragon as a result of President Trump’s threat to end his subsidies and government contracts.

SpaceX will decommission its Dragon spacecraft in response to the intense war of words that President Trump and CEO Elon Musk have entered on various social media platforms today.
President Trump and Musk, who was once considered a right-hand man to Trump, have entered a vicious war of words on Thursday. The issues stem from Musk’s disagreement with the “Big Beautiful Bill,” which will increase the U.S. federal deficit, the Tesla and SpaceX frontman says.
How Tesla could benefit from the ‘Big Beautiful Bill’ that axes EV subsidies
The insults and threats have been brutal, as Trump has said he doesn’t know if he’ll respect Musk again, and Musk has even stated that the President would not have won the election in November if it were not for him.
President Trump then said later in the day that:
“The easiest way to save money in our Budget, Billions and Billions of Dollars, is to terminate Elon’s Government Subsidies and Contracts. I was always surprised that Biden didn’t do it!”
Musk’s response was simple: he will decommission the SpaceX capsule responsible for transporting crew and cargo to the International Space Station (ISS): Dragon.
🚨 Elon says Dragon will be decommissioned immediately due to President Trump’s threats to terminate SpaceX’s government contracts https://t.co/XNB0LflZIy
— TESLARATI (@Teslarati) June 5, 2025
Dragon has completed 51 missions, 46 of which have been to the ISS. It is capable of carrying up to 7 passengers to and from Earth’s orbit. It is the only spacecraft that is capable of returning vast amounts of cargo to Earth. It is also the first private spacecraft to take humans to the ISS.
The most notable mission Dragon completed is one of its most recent, as SpaceX brought NASA astronauts Butch Wilmore and Suni Williams back to Earth after being stranded at the ISS by a Boeing Starliner capsule.
SpaceX’s reluctance to participate in federally funded projects may put the government in a strange position. It will look to bring Boeing back in to take a majority of these projects, but there might be some reluctance based on the Starliner mishap with Wilmore and Williams.
SpaceX bails out Boeing and employees are reportedly ‘humiliated’
News
SpaceX hit with mishap investigation by FAA for Starship Flight 9
Starship’s ninth test flight has the FAA requiring a mishap investigation from SpaceX.

SpaceX has been hit with yet another mishap investigation by the Federal Aviation Administration (FAA) related to the company’s ninth test flight of Starship earlier this week.
The FAA said the mishap investigation is “focused only on the loss of the Starship vehicle, which did not complete its launch or reentry as planned.” The agency said the loss of the Super Heavy booster is covered by one of the FAA’s approved test induced damage exceptions requested by SpaceX.
All of Starship and Super Heavy booster debris landed within the designated hazard areas, the FAA confirmed.
It said it activated a Debris Response Area out of an abundance of caution as the booster “experienced its anomaly over the Gulf of America during its flyback toward Texas. The FAA subsequently determined the debris did not fall outside of the hazard area. During the event there were zero departure delays, one flight was diverted, and one airborne flight was held for 24 minutes. ”
SpaceX has become accustomed to mishap investigations by the FAA, as they have been impacted by them on several occasions in the past, including on Flight 8. However, they are a precautionary measure and usually are resolved within a few weeks.
Flight 9 was one of SpaceX’s most eventful, as there were several discoveries during the launch. First, it was SpaceX’s first time reusing a Super Heavy booster, as the one utilized for Flight 9 was also used on Flight 7 in January.
Contact with the booster and Starship were both lost during Flight 9. SpaceX said the booster was lost “shortly after the start of landing burn when it experienced a rapid unscheduled disassembly approximately 6 minutes after launch.”
Meanwhile, Starship was set to make a splashdown in the Indian Ocean, but the vehicle was lost about 46 minutes into the flight, SpaceX said in a mission recap.
It was an improvement from the previous two flights, as both 7 and 8 resulted in the loss of Starship after just a few minutes. Flight 9 lasted considerably longer. These flights are also not intended to make it to Mars, despite what other reports might try to tell you.
These are ways to gain information for when SpaceX eventually tries to get Starship to Mars.
Elon Musk
SpaceX Starship gets FAA nod for ninth test flight
The FAA has given the green light for Starship’s ninth test flight.

SpaceX has received FAA approval for the ninth test flight of the Starship rocket. The approval was delayed due to the federal agency finishing its comprehensive safety review of the eighth flight earlier this year.
The FAA said in a statement that it has determined that SpaceX has “satisfactorily addressed the causes of the mishap, and therefore, the Starship vehicle can return to flight.”
The eighth test flight occurred back on March 6. SpaceX completed a successful liftoff of Starship and the Super Heavy Booster, before the two entered stage separation a few minutes after launch.
Starship Flight 8: SpaceX nails Super Heavy booster catch but loses upper stage
The booster returned and was caught by the chopsticks on the launch pad, completing the second successful booster catch in the program’s history. However, SpaceX lost contact with Starship in the upper atmosphere.
The ship broke up and reentered the atmosphere over Florida and the Bahamas.
The debris situation caused the FAA to initiate a mishap investigation:
Starship Flight 8’s Ship 34 provided some beautiful fireworks in the sky during its rapid unscheduled disassembly. Beautiful but unfortunate.
Hopefully, Flight 9 would no longer have any RUD incidents. pic.twitter.com/p4qAToDXOM
— TESLARATI (@Teslarati) March 7, 2025
The FAA said it will verify that SpaceX implements all the corrective actions on Flight 9 that it discovered during the mishap investigation.
There is no current confirmed launch window, but the earliest it could take off from Starbase is Tuesday, May 27, at 6:30 p.m. local time.
To prevent any injuries and potentially limit any damage, the FAA has stayed in contact with various countries that could be impacted if another loss of vehicle occurs:
“The FAA is in close contact and collaboration with the United Kingdom, Turks & Caicos Islands, Bahamas, Mexico, and Cuba as the agency continues to monitor SpaceX’s compliance with all public safety and other regulatory requirements.”
The agency has also stated that the Aircraft Hazard Area (AHA) is approximately 1,600 nautical miles and extends eastward from the Starbase, Texas, launch site through the Straits of Florida, including the Bahamas and Turks & Caicos.
For flight 8, the AHA was just 885 nautical miles.
-
News1 week ago
Tesla to lose 64 Superchargers on New Jersey Turnpike in controversial decision
-
News2 weeks ago
Tesla gets major upgrade that Apple users will absolutely love
-
News2 weeks ago
Tesla teases new color while testing refreshed Model S, X
-
Elon Musk2 weeks ago
Tesla investors demand 40-hour workweek from Elon Musk
-
News1 day ago
I took a Tesla Cybertruck weekend Demo Drive – Here’s what I learned
-
Elon Musk1 week ago
Elon Musk explains Tesla’s domestic battery strategy
-
News2 weeks ago
Tesla Cybertrucks join Jalisco’s police fleet ahead of FIFA World Cup
-
News2 weeks ago
Tesla rolls out new crucial safety feature aimed at saving children