News
SpaceX Falcon Heavy rocket rolls to pad for Tuesday launch, dual booster landing
A SpaceX Falcon Heavy rocket has rolled out to Kennedy Space Center Pad 39A for its first launch (and dual booster landing) in almost three and a half years.
Missing its payload fairing and the US Space Force’s classified USSF-44 payload, SpaceX’s fourth Falcon Heavy rocket rolled out to Pad 39A for the first time on October 25th. On the 27th, the rocket successfully fired up all 27 of its first-stage Merlin 1D engines, reasserting its status as the most powerful operational rocket in the world. On October 30th, SpaceX finally brought Falcon Heavy horizontal and rolled the rocket back to Pad 39A’s integration hangar, where the USSF-44 mission’s several payloads – safely stowed inside a payload fairing – were installed on the rocket.
24 hours later, Falcon Heavy – now fully assembled – departed the hangar again. According to the US Space Systems Command (SSC), despite the exceptionally late rollout on October 31st, SpaceX is on track to launch Falcon Heavy no earlier than (NET) 9:41 am EDT (13:41 UTC) on Tuesday, November 1st.
As previously discussed on Teslarati, USSF-44 will be SpaceX’s first attempt at a direct launch to a geostationary orbit (GEO) some ~36,000 kilometers (~22,400 mi) above Earth’s surface, where spacecraft can hover motionless over their region of choice. To accomplish that feat, Falcon Heavy’s upper stage will need to survive a roughly six-hour coast in the harsh vacuum of space, likely making USSF-44 one of the most challenging missions SpaceX has ever attempted.
“Long orbital coasts of six or so hours are necessary for some of the most challenging launch trajectories. Direct-to-geostationary launches are the most common mission requiring long coast capabilities and are often demanded by the US military. When Falcon’s upper stage gets too cold, its kerosene fuel – which freezes at a much higher temperature than Falcon’s liquid oxygen oxidizer – becomes viscous and slush-like before it becomes solid. If ingested in Falcon’s Merlin Vacuum engine, slushy fuel would likely prevent ignition or outright destroy it.“
Teslarati.com – October 10th, 2022
Simultaneously, while worrying about kerosene fuel getting too cold, SpaceX must also ensure that the Falcon upper stage’s cryogenic liquid oxygen (LOx) oxidizer doesn’t boil into gas. If too much LOx warms up and has to be vented out as it turns to gas, the Falcon upper stage could find itself without enough propellant to complete its geostationary orbit circularization burn.
LOx is far less stable, which makes it a bit ironic that the upper stage’s fuel tank bares the only visible sign of the tweaks needed to survive a long coast. To keep the RP1 fuel warmer in orbit, SpaceX has added a layer of grey paint to the RP1 tank, increasing the amount of heat that can be absorbed through unfiltered sunlight. The uninsulated LOx tank, meanwhile, benefits from the unintuitive fact that a cryogenic liquid can stay liquid for a surprisingly long time because some of it warms up and boils off as a gas, sacrificing a small quantity to keep the rest cool.

According to the US Space Force, USSF-44 will carry several “various payloads” attached to the second Northrop Grumman “Long Duration Propulsive EELV (Evolved Expendable Launch Vehicle) Secondary Payload Adapter” or LDPE-2 – essentially a long-duration kick stage. Cataloged on EverydayAstronaut.com, the payloads include two Lockheed Martin LINUSS-A cubesats that will demonstrate a handful of new technologies and capabilities; TETRA-1, a microsat built by Millenium Space Systems to test on-orbit maneuverability; and a communications satellite prototype called USUVL. Spaceflight Now reports that LPDE-2 will carry three hosted payloads and deploy three satellites.
Finally, a recent Space Systems Command press release [PDF] mentioned a mysterious “Shepard demonstration” – likely a second propulsive kick stage – for the first time, which almost nothing is known about. It’s unclear if there is a main classified satellite the mission revolves around or if USSF-44 is simply a collection of various rideshare payloads headed to GEO.
Regardless, to launch them directly into geostationary orbit, USSF-44 will mark the first time SpaceX intentionally expends a Falcon Heavy booster. Over three previous launches, SpaceX only managed to land a Falcon Heavy center core once, but that core then tipped over and was destroyed at sea. Two other attempts resulted in failed landings. USSF-44 will continue that trend. Falcon Heavy’s twin side boosters will attempt to continue a more positive trend of simultaneous side-by-side landings and boost back to Florida to touch down at SpaceX’s LZ-1 and LZ-2 pads. SpaceX will also attempt to recover both halves of Falcon Heavy’s payload fairing a record-breaking 1410 kilometers (876 mi) off the Florida coast.
SpaceX says weather is 90% favorable for Falcon Heavy’s November 1st launch attempt. Stay tuned for a link to the company’s official webcast.
News
Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult
Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.
Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.
However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.
He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:
Wow just wow!
It’s 8:30PM, 29° out ice storm hailing & Tesla Robotaxi service has turned back on!
Waymo is offline & vast majority of humans are home in the storm
Ride 38 was still supervised but by far most impressive yet pic.twitter.com/1aUnJkcYm8
— David Moss (@DavidMoss) January 25, 2026
Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”
This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.
However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.
News
Tesla gives its biggest hint that Full Self-Driving in Europe is imminent
Tesla has given its biggest hint that Full Self-Driving in Europe is imminent, as a new feature seems to show that the company is preparing for frequent border crossings.
Tesla owner and influencer BLKMDL3, also known as Zack, recently took his Tesla to the border of California and Mexico at Tijuana, and at the international crossing, Full Self-Driving showed an interesting message: “Upcoming country border — FSD (Supervised) will become unavailable.”
FSD now shows a new message when approaching an international border crossing.
Stayed engaged the whole way as we crossed the border and worked great in Mexico! pic.twitter.com/bDzyLnyq0g
— Zack (@BLKMDL3) January 26, 2026
Due to regulatory approvals, once a Tesla operating on Full Self-Driving enters a new country, it is required to comply with the laws and regulations that are applicable to that territory. Even if legal, it seems Tesla will shut off FSD temporarily, confirming it is in a location where operation is approved.
This is something that will be extremely important in Europe, as crossing borders there is like crossing states in the U.S.; it’s pretty frequent compared to life in America, Canada, and Mexico.
Tesla has been working to get FSD approved in Europe for several years, and it has been getting close to being able to offer it to owners on the continent. However, it is still working through a lot of the red tape that is necessary for European regulators to approve use of the system on their continent.
This feature seems to be one that would be extremely useful in Europe, considering the fact that crossing borders into other countries is much more frequent than here in the U.S., and would cater to an area where approvals would differ.
Tesla has been testing FSD in Spain, France, England, and other European countries, and plans to continue expanding this effort. European owners have been fighting for a very long time to utilize the functionality, but the red tape has been the biggest bottleneck in the process.
Tesla Europe builds momentum with expanding FSD demos and regional launches
Tesla operates Full Self-Driving in the United States, China, Canada, Mexico, Puerto Rico, Australia, New Zealand, and South Korea.
Elon Musk
SpaceX Starship V3 gets launch date update from Elon Musk
The first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.
Elon Musk has announced that SpaceX’s next Starship launch, Flight 12, is expected in about six weeks. This suggests that the first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.
In a post on X, Elon Musk stated that the next Starship launch is in six weeks. He accompanied his announcement with a photo that seemed to have been taken when Starship’s upper stage was just about to separate from the Super Heavy Booster. Musk did not state whether SpaceX will attempt to catch the Super Heavy Booster during the upcoming flight.
The upcoming flight will mark the debut of Starship V3. The upgraded design includes the new Raptor V3 engine, which is expected to have nearly twice the thrust of the original Raptor 1, at a fraction of the cost and with significantly reduced weight. The Starship V3 platform is also expected to be optimized for manufacturability.
The Starship V3 Flight 12 launch timeline comes as SpaceX pursues an aggressive development cadence for the fully reusable launch system. Previous iterations of Starship have racked up a mixed but notable string of test flights, including multiple integrated flight tests in 2025.
Interestingly enough, SpaceX has teased an aggressive timeframe for Starship V3’s first flight. Way back in late November, SpaceX noted on X that it will be aiming to launch Starship V3’s maiden flight in the first quarter of 2026. This was despite setbacks like a structural anomaly on the first V3 booster during ground testing.
“Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X.