News
SpaceX’s Starship rocket just took a big leap towards orbit with latest test success
A full-scale Starship rocket has passed a critical test for the first time ever, strongly suggesting that the next-generation launch vehicle could be much closer to orbital readiness than most would imagine.
To be clear, a huge amount of work remains before Starship can be deemed anywhere close to its first orbital flight tests, not the least of which is the fabrication and assembly of the first massive Super Heavy booster(s). However, after Starship SN4’s latest successful May 9th test, it’s hard to see any apparent showstoppers that can’t be handled with a combination of fairly routine testing and iterative progress, as well as time and money. There is certainly room for improvement throughout the program but SpaceX has effectively demonstrated that the biggest practical concerns about its approach to Starship are moot.
Captured live on May 9th and 10th by local resident and photographer Mary (bocachicagal) with the help of NASASpaceflight.com, SpaceX worked for about two days to reconfigure its fourth full-scale Starship prototype after two successful Raptor engine static fires and prepare it for a different kind of test. That work mainly involved removing said Raptor and replacing it with a hydraulic ram stand used to simulate the thrust of 1-3 engines without actually needing to perform a static fire test, further allowing SpaceX to simulate much longer engine operations than its spartan test pad could survive. Around 9pm CDT on May 9th (02:00 UTC, May 10), Starship SN4’s latest trial began.
Known as a cryogenic pressure and load test, it differed from a prior “cryo proof test” completed on April 26th, in which Starship was fully loaded with liquid nitrogen (more than twice as cold as dry ice), pressurized to a bit less than 5 bar (~70 psi), and stressed with hydraulic rams. About a week later, after installing a Raptor engine on a full-scale Starship prototype for the first time ever, Starship SN4 fired up said engine on May 5th – another historic first for the next-generation launch vehicle. 30 hours later, SpaceX performed another wet dress rehearsal (WDR) with liquid methane and oxygen and fired up Starship’s Raptor engine again.
After about 48 hours of reconfiguration, SpaceX moved on to a much more serious cryogenic test. As noted by CEO Elon Musk, the 4.9 bar the rocket previously reached was accepted as enough to perform a Raptor static fire test and possibly enough for a low-stress, low-altitude flight test to ~150m (500 ft). For orbital flight, however, Starship needs to withstand a minimum of 6 bar (~90 psi), while 8.5 bar (125 psi) is preferable to give the rocket the 1.4x safety factor optimal for human spaceflight.
This time, SpaceX – having successfully gathered data from two static fire tests and several wet dress rehearsals – was ready to risk Starship SN4 and pressurized it all the way to 7.5 bar (~110 psi). While ~12% shy of minimum human spaceflight standards, Starship SN4 successfully reached and maintained 7.5 bar while the ship stressed with hydraulic rams to simulate the thrust of three Raptor engines, all of which it survived fully intact. What 7.5 bar does offer, however, is a 1.25x safety factor – on the higher end of aerospace industry standards for uncrewed orbital spaceflight (i.e. cargo/satellite launches).

Ready for orbit?
Technically, this means that – pending much additional testing and verification with different serial prototypes and (likely) higher pressures – Starship’s stainless steel structure is effectively qualified for uncrewed orbital launches. Of course, reality is much more complex. To actually perform and survive orbital flights, SpaceX will first need to build and similarly qualify the first Super Heavy boosters and ensure that those unprecedentedly large rockets can survive and sustain ~20-30 Raptor engines firing simultaneously.

Aside from Super Heavy, it’s unknown if SpaceX has begun testing Raptor engines at the durations they will need to burn to booster Starships into orbit (TBD; likely 5-10 minutes of continuous operation). Along those lines, SpaceX also needs to build, test, and qualify Raptor’s vacuum-optimized sibling to complement the sea level version’s smaller, less-efficient nozzle. Still, Musk has already revealed that RaptorVac could be a matter of weeks from its first static fire and rocket engine development – while incredibly challenging – is more of a known quantity for SpaceX.
Perhaps the most important unknown is whether SpaceX’s recent May 2020 WDRs and static fires have used autogenous pressurization, a more efficient method of pressurizing rockets by using hot gas generated by their own engines. It’s extremely likely that SpaceX has been autogenously pressurizing Starship SN4 for its recent tests, but if that weren’t the case, it would be a big source of schedule uncertainty without significant redesign work.
Ultimately, SpaceX appears to have proven that orbital-class rockets can be built cheaply out of commodified steel in extraordinarily spartan production facilities. Many, many challenges remain but the biggest uncertainty and hurdle facing SpaceX’s Starship program and ambitions is well on its way to being fully put to rest.
News
Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count
That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.
Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater.
That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.
Two-seat Cybercabs make perfect sense
During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab.
“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said.
Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.
“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said.
Tesla’s robotaxi lineup is already here
The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.
The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.
Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.
News
Tesla Cybercab spotted with interesting charging solution, stimulating discussion
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.
The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.
But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:
🚨 Tesla Cybercab charging port is in the rear of the vehicle!
Here’s a great look at plugging it in!!
— TESLARATI (@Teslarati) January 29, 2026
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.
However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.
Wireless for Operation, Wired for Downtime
It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.
The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.
Tesla wireless charging patent revealed ahead of Robotaxi unveiling event
However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.
In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.
Induction Charging Challenges
Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.
While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.
Production Timing and Potential Challenges
With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.
It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.
In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.