News
SpaceX Super Heavy booster returns to launch pad after major repairs
SpaceX has returned its newest Super Heavy to Starbase’s orbital launch site (OLS) after rapidly repairing damage the booster suffered during its first round of testing.
Super Heavy Booster 7 (B7) left the High Bay it was assembled in for the first time on March 31st and rolled a few miles down the road to nearby Starship launch and test facilities on a set of self-propelled mobile transporters (SPMTs). On April 2nd, the roughly 67-meter-tall (~220 ft; 69m w/ Raptors) rocket was installed on top of Starbase’s lone orbital launch mount (OLM), setting the stage for crucial qualification testing.
The start of that process was exceptionally successful. On April 4th, after a smooth launch mount installation, SpaceX quickly filled Booster 7’s propellant tanks with a relatively benign cryogenic fluid (liquid nitrogen, liquid oxygen, or both) to simulate the thermal and mechanical characteristics of real flammable propellant. Despite the fact that the test marked the first time SpaceX had fully filled a Super Heavy prototype’s tanks, Booster 7 sailed through the ‘cryoproof’ without any obvious issue.
On April 8th, SpaceX moved Super Heavy B7 from the orbital launch mount to a structural test stand that had been installed and modified just a few hundred feet away in the weeks prior. This is where Booster 7’s near-perfect start to qualification testing took a bit of a turn. Booster 7 is only the third full-size Super Heavy prototype SpaceX has tested since July 2021. Like Booster 3 and Booster 4 before it, Booster 7 features some major design changes that ultimately make the prototype a pathfinder, necessitating extensive qualification testing.
To name just a few of the changes, Super Heavy B7 is the first booster fitted with a 33-engine puck and the first finished Starship prototype of any kind designed to use new Raptor V2 engines. With all 33 engines installed and operating a full thrust, Booster 7’s entire structure – and its aft thrust section especially – would be subjected to around 40% more thrust and stress than Booster 4, which indirectly completed structural testing with the help of a sacrificial test tank. Beyond differences in thrust and mechanical stress, Booster 7 is also the first Super Heavy to reach the test stand with secondary ‘header’ tanks meant to store landing propellant.
It’s unclear if those header tanks were fully filled and drained during Booster 7’s cryoproof, but they would not be quite as cooperative during a different kind of cryogenic testing on the structural test stand. The stand SpaceX modified specifically for Super Heavy B7 was outfitted with 13 hydraulic rams to simulate the full thrust of the booster’s central Raptor V2 engines – up to almost 3000 tons (~6.6M lbf) compared to Booster 4’s ~1700 tons (~3.7M lbf) with a smaller cluster of nine engines.
Implosion at the Structural Test Stand
After a few false starts and minor tests on the stand, Booster 7 finally managed some significant testing on April 14th. Judging by the rhythmic shattering of ice that built up on Super Heavy’s tanks, the test stand was able to simulate the thrust of Raptors to some degree and subject the booster to major mechanical stress that was felt from tip to tail. Within a few days, Booster 7 was removed from the test stand and returned to the high bay on April 18th. Around April 21st or 22nd, an image was leaked showing extensive damage inside Booster 7, confirming that the Super Heavy’s test campaign had been forced to end prematurely.

Right away, the damage shown in the photo hinted at an operational failure, meaning that mistakes made by the rocket’s operators may have been more to blame than a possible design flaw. The photo shows a short portion of B7’s liquid methane (LCH4) transfer tube that runs through the booster’s new liquid oxygen (LOx) header tank, which itself sits inside Super Heavy’s main LOx tank at the aft end of the rocket – a tube inside a small tank inside a large tank, in other words. Super Heavy’s LCH4 transfer tube generally does what it says, allowing methane to safely fly down through the main LOx tank and fuel up to 33 Raptor engines. At full thrust, that tube would need to supply around 20 tons (~45,000 lb) of methane per second.
However, on top of merely transferring methane through the oxygen tank, Booster 7 introduced a design change that allows some or all of that tube to change functions and become a header tank mid-flight. That would require a system of valves that could seal off the main LCH4 tank once it was emptied, turning the transfer tube into a sort of giant steel straw filled with enough LCH4 to fuel Super Heavy’s boost-back and landing burns.
The damaged transfer tube in the leaked photo of Booster 7 doesn’t look that unlike what one might expect to see if they sucked through one end of a straw while blocking the other end, collapsing the center. Translated to the scale of Super Heavy, after an otherwise successful day of structural testing, SpaceX operators may have accidentally closed or opened the wrong valves while draining the booster’s transfer tube of liquid oxygen or nitrogen. As the heavy liquid drained from the tube, a lack of pressure equalization could have quickly drawn a vacuum and caused the tube to implode.
On April 29th, a SpaceX fan turned analyst published an analysis that convincingly pinpointed the moment Booster 7’s transfer tube collapsed. Simultaneously, because it showed that the transfer tube likely imploded during detanking, the analysis more or less confirmed the above speculation that the failure had been caused by a degree of operator error or poor test design. Of course, it’s possible that a hardware or software design flaw contributed to or caused the anomaly or that something like a pressure differential in the LOx header tank and LCH4 header tube could also explain the damage, but the accidental formation of a vacuum during detanking is arguably the simplest (obvious) explanation.
After the image of the internal damage leaked, the immediate consensus among fans and close followers was that Booster 7 was beyond repair. Instead, SpaceX appears to have proven those assumptions wrong and somehow managed to repair the upgraded Super Heavy to the point that it was worth testing again less than three weeks after returning to the high bay. On May 6th, B7 was rolled back to the launch site and installed, for the second time, on the orbital launch mount.
Prior to the failure, the general expectation was that SpaceX would begin installing Raptor V2 engines as soon as Booster 7 passed structural testing. It remains to be seen if SpaceX wants to repeat Booster 7’s cryoproof or structural testing to ensure that its quick repairs did the job before proceeding into static fire testing as previously planned. Nonetheless, hope lives on for the Super Heavy prototype and new test windows have been scheduled from 10am to 10pm on May 9th, 10th, and 11th.
Elon Musk
Tesla Full Self-Driving pricing strategy eliminates one recurring complaint
Tesla’s new Full Self-Driving pricing strategy will eliminate one recurring complaint that many owners have had in the past: FSD transfers.
In the past, if a Tesla owner purchased the Full Self-Driving suite outright, the company did not allow them to transfer the purchase to a new vehicle, essentially requiring them to buy it all over again, which could obviously get pretty pricey.
This was until Q3 2023, when Tesla allowed a one-time amnesty to transfer Full Self-Driving to a new vehicle, and then again last year.
Tesla is now allowing it to happen again ahead of the February 14th deadline.
The program has given people the opportunity to upgrade to new vehicles with newer Hardware and AI versions, especially those with Hardware 3 who wish to transfer to AI4, without feeling the drastic cost impact of having to buy the $8,000 suite outright on several occasions.
Now, that issue will never be presented again.
Last night, Tesla CEO Elon Musk announced on X that the Full Self-Driving suite would only be available in a subscription platform, which is the other purchase option it currently offers for FSD use, priced at just $99 per month.
Tesla is shifting FSD to a subscription-only model, confirms Elon Musk
Having it available in a subscription-only platform boasts several advantages, including the potential for a tiered system that would potentially offer less expensive options, a pay-per-mile platform, and even coupling the program with other benefits, like Supercharging and vehicle protection programs.
While none of that is confirmed and is purely speculative, the one thing that does appear to be a major advantage is that this will completely eliminate any questions about transferring the Full Self-Driving suite to a new vehicle. This has been a particular point of contention for owners, and it is now completely eliminated, as everyone, apart from those who have purchased the suite on their current vehicle.
Now, everyone will pay month-to-month, and it could make things much easier for those who want to try the suite, justifying it from a financial perspective.
The important thing to note is that Tesla would benefit from a higher take rate, as more drivers using it would result in more data, which would help the company reach its recently-revealed 10 billion-mile threshold to reach an Unsupervised level. It does not cost Tesla anything to run FSD, only to develop it. If it could slice the price significantly, more people would buy it, and more data would be made available.
News
Tesla Model 3 and Model Y dominates U.S. EV market in 2025
The figures were detailed in Kelley Blue Book’s Q4 2025 U.S. Electric Vehicle Sales Report.
Tesla’s Model 3 and Model Y continued to overwhelmingly dominate the United States’ electric vehicle market in 2025. New sales data showed that Tesla’s two mass market cars maintained a commanding segment share, with the Model 3 posting year-to-date growth and the Model Y remaining resilient despite factory shutdowns tied to its refresh.
The figures were detailed in Kelley Blue Book’s Q4 2025 U.S. Electric Vehicle Sales Report.
Model 3 and Model Y are still dominant
According to the report, Tesla delivered an estimated 192,440 Model 3 sedans in the United States in 2025, representing a 1.3% year-to-date increase compared to 2024. The Model 3 alone accounted for 15.9% of all U.S. EV sales, making it one of the highest-volume electric vehicles in the country.
The Model Y was even more dominant. U.S. deliveries of the all-electric crossover reached 357,528 units in 2025, a 4.0% year-to-date decline from the prior year. It should be noted, however, that the drop came during a year that included production shutdowns at Tesla’s Fremont Factory and Gigafactory Texas as the company transitioned to the new Model Y. Even with those disruptions, the Model Y captured an overwhelming 39.5% share of the market, far surpassing any single competitor.
Combined, the Model 3 and Model Y represented more than half of all EVs sold in the United States during 2025, highlighting Tesla’s iron grip on the country’s mass-market EV segment.
Tesla’s challenges in 2025
Tesla’s sustained performance came amid a year of elevated public and political controversy surrounding Elon Musk, whose political activities in the first half of the year ended up fueling a narrative that the CEO’s actions are damaging the automaker’s consumer appeal. However, U.S. sales data suggest that demand for Tesla’s core vehicles has remained remarkably resilient.
Based on Kelley Blue Book’s Q4 2025 U.S. Electric Vehicle Sales Report, Tesla’s most expensive offerings such as the Tesla Cybertruck, Model S, and Model X, all saw steep declines in 2025. This suggests that mainstream EV buyers might have had a price issue with Tesla’s more expensive offerings, not an Elon Musk issue.
Ultimately, despite broader EV market softness, with total U.S. EV sales slipping about 2% year-to-date, Tesla still accounted for 58.9% of all EV deliveries in 2025, according to the report. This means that out of every ten EVs sold in the United States in 2025, more than half of them were Teslas.
News
Tesla Model 3 and Model Y earn Euro NCAP Best in Class safety awards
“The company’s best-selling Model Y proved the gold standard for small SUVs,” Euro NCAP noted.
Tesla won dual categories in the Euro NCAP Best in Class awards, with the Model 3 being named the safest Large Family Car and the Model Y being recognized as the safest Small SUV.
The feat was highlighted by Tesla Europe & Middle East in a post on its official account on social media platform X.
Model 3 and Model Y lead their respective segments
As per a press release from the Euro NCAP, the organization’s Best in Class designation is based on a weighted assessment of four key areas: Adult Occupant, Child Occupant, Vulnerable Road User, and Safety Assist. Only vehicles that achieved a 5-star Euro NCAP rating and were evaluated with standard safety equipment are eligible for the award.
Euro NCAP noted that the updated Tesla Model 3 performed particularly well in Child Occupant protection, while its Safety Assist score reflected Tesla’s ongoing improvements to driver-assistance systems. The Model Y similarly stood out in Child Occupant protection and Safety Assist, reinforcing Tesla’s dual-category win.
“The company’s best-selling Model Y proved the gold standard for small SUVs,” Euro NCAP noted.
Euro NCAP leadership shares insights
Euro NCAP Secretary General Dr. Michiel van Ratingen said the organization’s Best in Class awards are designed to help consumers identify the safest vehicles over the past year.
Van Ratingen noted that 2025 was Euro NCAP’s busiest year to date, with more vehicles tested than ever before, amid a growing variety of electric cars and increasingly sophisticated safety systems. While the Mercedes-Benz CLA ultimately earned the title of Best Performer of 2025, he emphasized that Tesla finished only fractionally behind in the overall rankings.
“It was a close-run competition,” van Ratingen said. “Tesla was only fractionally behind, and new entrants like firefly and Leapmotor show how global competition continues to grow, which can only be a good thing for consumers who value safety as much as style, practicality, driving performance, and running costs from their next car.”