You’ll never know how far the Tesla Semi, the Volvo VNR, or other electric semi-trucks will go according to EPA testing standards. The answer is incredibly complex, but simply put, the EPA does not test or evaluate heavy-duty trucks for range ratings. Don’t expect the agency to tell you how far the Tesla Semi or other EV trucks will go because testing simply does not happen.
This allows manufacturers of heavy-duty electric vehicles and semi-trucks to have a profoundly unique ability to control the narrative that surrounds how far their product can go on a full charge. As crazy as it sounds, customers leaping into the all-electric Class 8 sector are putting trust in the companies they buy from when weighing what is arguably the most important metric of the EV ownership experience: range.
Following the certification of the Tesla Semi by the EPA in late October, which Teslarati exclusively reported on, we were bombarded with questions surrounding the vehicle’s EPA-rated range. Light-duty passenger electric vehicles and their success can almost always be gauged by how customers react to range ratings during unveiling events. When Lucid announced it had successfully reached an EPA-rated 520 miles of range on a single charge in the Air Dream Edition, the EV world was astounded. While the vehicle has felt heavy demand on order logs, Lucid still fulfills them to this day.
Meanwhile, other manufacturers bring vehicles to the market with relatively “light” range projections or ratings. It is always disappointing to see a vehicle with so much potential offer so little of what EV owners want: driving range. People do not want to stop at EV chargers. They want to continue their journey on the roads.
Polestar’s recently-unveiled Polestar 3 comes to mind when I (and some others) think of an astounding vehicle with not-so-astounding range and efficiency. Despite its 111 kWh battery pack, the Polestar 3 only offers 379 miles of WLTP-rated range. WLTP ratings are usually much more generous than EPA ratings, so I am anticipating the vehicle to reach around 300 miles of range when the U.S. agency gets its hands on it.
When light-duty vehicles are assessed, approved, and granted Certificates of Conformity from the EPA, they are available for the public to read and include results on efficiency and range testing. This is where heavy-duty vehicles and the testing process differ vastly from light-duty ones.
While these are both vehicle classes that are purchased and used by consumers on public roads, only light-duty vehicles are assessed for range ratings, while heavy-duty vehicle manufacturers do not have their products’ range “evaluated, reported, or included” in an application for certification, the EPA said in an emailed statement.
The EPA has numerous documents relating to this idea, as well as the Society of Automotive Engineers (SAE). However, the documents never directly specified why heavy-duty vehicles are not required to be tested by federal agencies. That does not mean that reasoning is not available.
The fact of the matter is the agency may not have been prepared to test heavy-duty electric vehicles for range ratings, especially this soon. A document found in the Federal Register that was submitted by the EPA and Department of Transportation (USDOT) in 2016 titled, “Greenhouse Gas Emissions and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles— Phase 2,” which established rules to reduce greenhouse gases, includes an interesting tidbit regarding electric vehicles:
“Given the high up-front costs and the developing nature of this technology, the agencies do not project fully electric vocational vehicles to be widely commercially available in the time frame of the final rules. For this reason, the agencies have not based the Phase 2 standards on adoption of full-electric vocational vehicles. We received many comments on electric trucks and buses. Specifically, EEI provided information on the total cost of ownership for electric trucks, and some applications may see attractive long-term cost.”
The time frame of the final rules is set to end in 2027 and apply to model year 2027 vehicles, according to the document.
The agency recognized in 2016 that these technologies may be in development, and we all know they are. As the EPA and NHTSA may not have been able to predict how quickly all-electric heavy-duty trucks would become a prevalent piece of American logistics, the agencies were aware that this technology was coming in the future:
“Phase 2 will include technology advancing standards that will phase in over the long-term (through model year 2027) to result in an ambitious, yet achievable program that will allow manufacturers to meet standards through a mix of different technologies at reasonable cost. The terminal requirements go into effect in 2027, and would apply to MY 2027 and subsequent model year vehicles, unless modified by future rulemaking. The Phase 2 standards will maintain the underlying regulatory structure developed in the Phase 1 program, such as the general categorization of MDVs and HDVs and the separate standards for vehicles and engines. However, the Phase 2 program will build on and advance Phase 1 in a number of important ways including the following: basing standards not only on currently available technologies but also on utilization of technologies now under development or not yet widely deployed while providing significant lead time to assure adequate time to develop, test, and phase in these controls.”
So, how do manufacturers determine range?
This is where things get very tricky because if the EPA is not testing the range itself as an unbiased government organization, it means manufacturers are required to test the vehicles themselves, leaving consumers to trust the companies that they are buying from.
Technically, manufacturers could say whatever they want regarding their electric trucks. Tesla has maintained significant range ratings for the Semi throughout its development, with Elon Musk recently stating the vehicle will have 500 miles of range per charge, with a sizeable payload. Of course, Tesla has been testing its vehicle internally and with the help of verified customers, like Frito Lay, who will take delivery of the first Semi on December 1.
It really comes down to independent testing. Volvo, for example, tested the range of its all-electric VNR Class 8 heavy-duty truck through a pilot program with third-party companies. Through its LIGHTS (Low Impact Green Heavy Transport Solutions) project, Volvo had companies like NFI Industries test the VNR through its commercial operations to prove and demonstrate the truck’s ability.
“By participating in the Volvo LIGHTS project, NFI is helping to prove that Volvo’s VNR Electric trucks can handle the daily rigors of freight movement. NFI continues to be a leader in sustainability, and it comes across in everything they do,” Peter Voorhoeve, president of Volvo Trucks North America, said. “NFI is realizing the immediate value the electric VNR provides—not just by eliminating emissions but creating an enthusiastic workforce complimenting the experience of driving these electric truck models.”
The LIGHTS project ran through 2021 and provided Volvo with “real-world operational data critical to the successful commercial scaling of these vehicles.”
So how do you know how far an all-electric Class 8 heavy-duty vehicle goes? You might literally have to find out for yourself, or you can trust the manufacturer’s word for it.
I’d love to hear from you! If you have any comments, concerns, or questions, please email me at joey@teslarati.com. You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.
News
Tesla Model Y leads South Korea’s EV growth in 2025
Data from the Korea Automobile and Mobility Industry Association showed that the Tesla Model Y emerged as one of the segment’s single biggest growth drivers.
South Korea’s electric vehicle market saw a notable rise in 2025, with registrations rising more than 50% and EV penetration surpassing 10% for the first time.
Data from the Korea Automobile and Mobility Industry Association showed that the Tesla Model Y, which is imported from Gigafactory Shanghai, emerged as one of the segment’s single biggest growth drivers, as noted in a report from IT Home News.
As per the Korea Automobile and Mobility Industry Association’s (KAMA) 2025 Korea Domestic Electric Vehicle Market Settlement report, South Korea registered 220,177 new electric vehicles in 2025, a 50.1% year-over-year increase. EV penetration also reached 13.1% in the country, entering double digits for the first time.
The Tesla Model Y played a central role in the market’s growth. The Model Y alone sold 50,397 units during the year, capturing 26.6% of South Korea’s pure electric passenger vehicle market. Sales of the Giga Shanghai-built Model Y increased 169.2% compared with 2024, driven largely by strong demand for the all-electric crossover’s revamped version.
Manufacturer performance reflected a tightly contested market. Kia led with 60,609 EV sales, followed closely by Tesla at 59,893 units and Hyundai at 55,461 units. Together, the three brands accounted for nearly 80% of the country’s total EV sales, forming what KAMA described as a three-way competitive market.
Imported EVs gained ground in South Korea in 2025, reaching a market share of 42.8%, while the share of domestically produced EVs declined from 75% in 2022 to 57.2% last year. Sales of China-made EVs more than doubled year over year to 74,728 units, supported in no small part by Tesla and its Model Y.
Elon Musk, for his part, has praised South Korean customers and their embrace of the electric vehicler maker. In a reply on X to a user who noted that South Koreans are fond of FSD, Musk stated that, “Koreans are often a step ahead in appreciating new technology.”
News
Samsung’s Tesla AI5/AI6 chip factory to start key equipment tests in March: report
Samsung Electronics seems to be ramping its efforts to start operations at its Taylor, Texas semiconductor plant.
Samsung Electronics seems to be ramping its efforts to start operations at its Taylor, Texas semiconductor plant, which will produce Tesla’s next-generation AI5 chip.
Preparing for Tesla’s AI5/AI6 chips
As per a report by Sina Finance, Samsung Electronics is looking to begin trial operations of extreme ultraviolet (EUV) lithography equipment at its Taylor facility in March. These efforts are reportedly intended to support the full production of Tesla’s AI5 chips starting in the latter half of 2026.
The Taylor factory, Samsung’s first wafer fabrication plant in the United States, covers roughly 4.85 million square meters and is nearing completion. Media reports, citing contractors, have estimated that about 7,000 workers now work on the factory, about 1,000 of whom are reportedly working from the facility’s office building.
Samsung is reportedly preparing to apply for a temporary occupancy permit, which would allow production to begin before the plant is fully completed.
Tesla’s aggressive AI chip roadmap
Elon Musk recently stated that Tesla’s next-generation AI5 chip is nearly complete, while early development on its successor, AI6, is already underway. Musk shared the update in a post on X, which also happened to be a recruiting message for engineers.
As per Musk, Tesla is looking to iterate its in-house AI chips on an accelerated timeline, with future generations, including AI7, AI8, and AI9, targeting a roughly nine-month design cycle. He also stated that the rapid cadence could allow Tesla’s chips to become the highest-volume AI processors in the world.
Previous reports have indicated that Samsung Electronics would be manufacturing Tesla’s AI5 chip, alongside its rival, Taiwan Semiconductor Manufacturing Company (TSMC). The two suppliers are expected to produce different versions of Tesla’s AI5 chip, with TSMC using a 3nm process and Samsung targeting 2nm production.
Elon Musk
Elon Musk’s Boring Company studying potential Giga Nevada tunnel: report
The early-stage feasibility work was funded by a state-affiliated economic group as officials searched for alternatives to worsening traffic and accidents along Interstate 80.
Elon Musk’s tunneling startup, The Boring Company, has been studying a potential tunnel system connecting Reno to Tesla Gigafactory Nevada, as per documents obtained by Fortune. The early-stage feasibility work was funded by a state-affiliated economic group as officials searched for alternatives to worsening traffic and accidents along Interstate 80.
Potential Giga Nevada tunnel
Documents reviewed by Fortune showed that The Boring Company received $50,000 in October to produce conceptual designs and a feasibility report for a tunnel beneath a nine-mile stretch of highway leading to Gigafactory Nevada. The payment came from the Economic Development Authority of Western Nevada (EDAWN), a nonprofit that works with the state to attract and expand businesses.
The proposed tunnel was one of several transportation alternatives being explored to address rising congestion and accidents along Interstate 80, which serves the Tahoe-Reno Industrial Center. The massive industrial park houses major employers, including Tesla and Panasonic, both of which had been in contact with the Nevada Governor’s Office regarding potential transportation solutions.
Emails obtained through public records requests showed that Tesla and Panasonic have also supported a separate commuter rail study that would use existing freight rail alongside the Interstate. It remains unclear if The Boring Company’s feasibility report had been completed, and key details for the potential project, including tunnel length, cost, and if autonomous Teslas would be used, were not disclosed.

Relieving I-80 congestion
Traffic and accidents along I-80 have increased sharply as data centers and new businesses moved into the 107,000-acre industrial center. State transportation data showed that the number of vehicles traveling certain stretches of the highway during peak hours doubled between January and July 2025 alone. Roughly 22,000 employees commute daily to the industrial park, with nearly 8,000 working for Tesla and more than 4,000 for Panasonic at the Giga Nevada complex.
Bill Thomas, who runs the Regional Transportation Commission of Washoe County, shared his thoughts about safety concerns in the area. “At this point in time, there’s about (one accident) every other day,” he said. He also noted that he is supportive of any projects that could alleviate traffic and accidents on the Interstate.
“We’re not paying for it. I’m not involved in it. But I understand there are conversations exploring whether that could be done. If there’s a private solution that helps the problem and improves safety, as far as I’m concerned, more power to them,” Thomas stated.