News
SpaceX wants to boost Hubble Space Telescope’s orbit with Dragon spacecraft
NASA and SpaceX have signed a Space Act Agreement to study the feasibility of boosting the orbit of the iconic Hubble Space Telescope, potentially ensuring that the highly successful observatory will remain operable well into the middle of this century.
Thanks to three servicing missions completed in the 1990s and 2000s, Hubble remains highly productive more than 32 years after its launch. NASA believes that that will remain the case until at least the late 2020s or 2030s. However, many components of the telescope have spent decades in the unforgiving environment of space, raising unsurprising concerns about their longevity.
More importantly, the inexorable march of time, gravity, and Earth’s atmosphere mean that Hubble is guaranteed to eventually reenter that atmosphere and burn up without intervention. That demise could come as early as the mid-2030s, but SpaceX thinks it could help extend the telescope’s viability into the 2050s.
NASA and SpaceX will spend the next six or so months discussing whether it’s possible to use Dragon to boost the telescope’s orbit back to a nominal 600 kilometers (~372 mi). Both parties say that the agreement will also investigate the possibility of Dragon servicing missions, which could be even more significant for Hubble. While a boost that large would likely keep it in orbit for decades to come, there’s no guarantee the telescope would remain functional to take full advantage of the extra time it would have.
During the fifth and final Space Shuttle servicing mission, NASA astronauts installed a docking adapter (Soft Capture Mechanism) on the Hubble Telescope. Although no concrete plans existed for any additional servicing missions, the forward-facing installation of that adapter has made this feasibility study possible.
In theory, that docking adapter could make boosting Hubble’s orbit far more feasible, safe, and affordable than a Shuttle-style crewed servicing mission. SpaceX’s Cargo Dragon 2 spacecraft has the same autonomous docking capabilities its crewed sibling has and costs less to launch and operate, so it’s not inconceivable that an uncrewed Dragon could autonomously dock with Hubble and boost its orbit. Jessica Jensen, SpaceX’s Vice President of Customer Operations and Integration, says that an uncrewed option will be studied alongside crewed servicing and orbit-boost alternatives.

According to Patrick Crouse, NASA’s Hubble Space Telescope project manager, without a reboost, NASA would need to consider a separate mission to ensure a controlled deorbit of the massive telescope by “the end of the decade.” The study’s targeted boost of “40 to 70 kilometers,” meanwhile, could extend the longevity of Hubble’s orbit by “15 to 20 years,” or well into the 2050s. But as a feasibility study, there’s a chance that it will conclude that using Dragon – crewed or uncrewed – to boost or service HST isn’t feasible. Ordinarily, the most likely outcome would be a conclusion that the project is feasible from a technical perspective but out of reach from a financial perspective.
Enter billionaire and private astronaut Jared Isaacman, who was directly involved in the September 29th press conference. In September 2021, Isaacman – alongside four others – became the first all-private astronaut mission in history to reach orbit. After the spectacular success of Inspiration4, Isaacman’s relationship with SpaceX has become even closer. In early 2022, the pair announced a new endeavor – the Polaris Program – that intends to conduct at least two or three more private astronaut launches over the next few years.
Expanding the scope of their joint ambitions, the Polaris Program intends to debut the world’s first privately developed EVA spacesuit, test spacecraft-to-spacecraft communications using Starlink’s network of space lasers, and culminate in the first crewed launch of SpaceX’s next-generation Starship rocket. On its own, the decision to privately fund and develop an EVA suit and pursue the ability to conduct EVAs out of Crew Dragon represents a major leap forward for SpaceX and private spaceflight if realized.
But crucially, when asked about the synergies between the Polaris Program, SpaceX, and NASA, Isaacman revealed that he and SpaceX are willing to undertake a sixth Hubble servicing mission more or less pro bono, “with little or no potential cost to the government.” According to Isaacman, it’s possible that “the study could result in [a Hubble servicing mission] becoming the second [Polaris Program] mission.”
Polaris Dawn, the program’s first mission, was recently delayed from a late-2022 launch target to March 2023. The four private astronauts assigned to the mission (including Isaacman himself) recently began training for the historic private EVA, which will see two of four astronauts attempt to briefly exit their Crew Dragon spacecraft in new SpaceX-designed suits. With a targeted apogee of 1400 kilometers (~870 mi), the mission will also attempt to break the record for the highest Earth orbit reached by astronauts, and the spacewalk attempt will also occur at a record-breaking altitude of 700 kilometers (~435 mi)
News
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.
The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.
Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:
I am in a robotaxi without safety monitor pic.twitter.com/fzHu385oIb
— TSLA99T (@Tsla99T) January 22, 2026
Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.
Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:
Robotaxi rides without any safety monitors are now publicly available in Austin.
Starting with a few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors, and the ratio will increase over time. https://t.co/ShMpZjefwB
— Ashok Elluswamy (@aelluswamy) January 22, 2026
Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing
The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.
In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.
While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.
Investor's Corner
Tesla Earnings Call: Top 5 questions investors are asking
Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.
The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.
Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.
There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:
- You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
- Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
- When is FSD going to be 100% unsupervised?
- Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
- What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
- Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
- Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
- Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
- Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
- Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.
Tesla will have its Earnings Call on Wednesday, January 28.
Elon Musk
Elon Musk shares incredible detail about Tesla Cybercab efficiency
Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.
ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.
The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.
Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.
Probably true
— Elon Musk (@elonmusk) January 22, 2026
ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest
This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.
The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.
Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.
Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.
It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:
“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”