

News
Mars travelers can use ‘Star Trek’ Tricorder-like features using smartphone biotech: study
Plans to take humans to the Moon and Mars come with numerous challenges, and the health of space travelers is no exception. One of the ways any ill-effects can be prevented or mitigated is by detecting relevant changes in the body and the body’s surroundings, something that biosensor technology is specifically designed to address on Earth. However, the small size and weight requirements for tech used in the limited habitats of astronauts has impeded its development to date.
A recent study of existing smartphone-based biosensors by scientists from Queen’s University Belfast (QUB) in the UK identified several candidates under current use or development that could be also used in a space or Martian environment. When combined, the technology could provide functionality reminiscent of the “Tricorder” devices used for medical assessments in the Star Trek television and movie franchises, providing on-site information about the health of human space travelers and biological risks present in their habitats.
Biosensors focus on studying biomarkers, i.e., the body’s response to environmental conditions. For example, changes in blood composition, elevations of certain molecules in urine, heart rate increases or decreases, and so forth, are all considered biomarkers. Health and fitness apps tracking general health biomarkers have become common in the marketplace with brands like FitBit leading the charge for overall wellness sensing by tracking sleep patterns, heart rate, and activity levels using wearable biosensors. Astronauts and other future space travelers could likely use this kind of tech for basic health monitoring, but there are other challenges that need to be addressed in a compact way.
The projected human health needs during spaceflight have been detailed by NASA on its Human Research Program website, more specifically so in its web-based Human Research Roadmap (HRR) where the agency has its scientific data published for public review. Several hazards of human spaceflight are identified, such as environmental and mental health concerns, and the QUB scientists used that information to organize their study. Their research produced a 20-page document reviewing the specific inner workings of the relevant devices found in their searches, complete with tables summarizing each device’s methods and suitability for use in space missions. Here are some of the highlights.
Risks in the Spacecraft Environment
During spaceflight, the environment is a closed system that has a two-fold effect: One, the immune system has been shown to decrease its functionality in long-duration missions, specifically by lowering white blood cell counts, and two, the weightless and non-competitive environment make it easier for microbes to transfer between humans and their growth rates increase. In one space shuttle era study, the number of microbial cells in the vehicle able to reproduce increased by 300% within 12 days of being in orbit. Also, certain herpes viruses, such as those responsible for chickenpox and mononucleosis, have been reactivated under microgravity, although the astronauts typically didn’t show symptoms despite the presence of active viral shedding (the virus had surfaced and was able to spread).
Frequent monitoring of the spacecraft environment and the crew’s biomarkers is the best way to mitigate these challenges, and NASA is addressing these issues to an extent with traditional instruments and equipment to collect data, although often times the data cannot be processed until the experiments are returned to Earth. An attempt has also been made to rapidly quantify microorganisms aboard the International Space Station (ISS) via a handheld device called the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS). However, this device cannot distinguish between microorganism species yet, meaning it can’t tell the difference between pathogens and harmless species. The QUB study found several existing smartphone-based technologies generally developed for use in remote medical care facilities that could achieve better identification results.

One of the devices described was a spectrometer (used to identify substances based on the light frequency emitted) which used the smartphone’s flashlight and camera to generate data that was at least as accurate as traditional instruments. Another was able to identify concentrations of an artificial growth hormone injected into cows called recominant bovine somatrotropin (rBST) in test samples, and other systems were able to accurately detect cyphilis and HIV as well as the zika, chikungunya, and dengue viruses. All of the devices used smartphone attachments, some of them with 3D-printed parts. Of course, the types of pathogens detected are not likely to be common in a closed space habitat, but the technology driving them could be modified to meet specific detection needs.
The Stress of Spaceflight
A group of people crammed together in a small space for long periods of time will be impacted by the situation despite any amount of careful selection or training due to the isolation and confinement. Declines in mood, cognition, morale, or interpersonal interaction can impact team functioning or transition into a sleep disorder. On Earth, these stress responses may seem common, or perhaps an expected part of being human, but missions in deep space and on Mars will be demanding and need fully alert, well-communicating teams to succeed. NASA already uses devices to monitor these risks while also addressing the stress factor by managing habitat lighting, crew movement and sleep amounts, and recommending astronauts keep journals to vent as needed. However, an all-encompassing tool may be needed for longer-duration space travels.
As recognized by the QUB study, several “mindfulness” and self-help apps already exist in the market and could be utilized to address the stress factor in future astronauts when combined with general health monitors. For example, the popular FitBit app and similar products collect data on sleep patterns, activity levels, and heart rates which could potentially be linked to other mental health apps that could recommend self-help programs using algorithms. The more recent “BeWell” app monitors physical activity, sleep patterns, and social interactions to analyze stress levels and recommend self-help treatments. Other apps use voice patterns and general phone communication data to assess stress levels such as “StressSense” and “MoodSense”.
Advances in smartphone technology such as high resolution cameras, microphones, fast processing speed, wireless connectivity, and the ability to attach external devices provide tools that can be used for an expanding number of “portable lab” type functionalities. Unfortunately, though, despite the possibilities that these biosensors could mean for human spaceflight needs, there are notable limitations that would need to be overcome in some of the devices. In particular, any device utilizing antibodies or enzymes in its testing would risk the stability of its instruments thanks to radiation from galactic cosmic rays and solar particle events. Biosensor electronics might also be damaged by these things as well. Development of new types of shielding may be necessary to ensure their functionality outside of Earth and Earth orbit or, alternatively, synthetic biology could also be a source of testing elements genetically engineered to withstand the space and Martian environments.
The interest in smartphone-based solutions for space travelers has been garnering more attention over the years as tech-centric societies have moved in the “app” direction overall. NASA itself has hosted a “Space Apps Challenge” for the last 8 years, drawing thousands of participants to submit programs that interpret and visualize data for greater understanding of designated space and science topics. Some of the challenges could be directly relevant to the biosensor field. For example, in the 2018 event, contestants are asked to develop a sensor to be used by humans on Mars to observe and measure variables in their environments; in 2017, contestants created visualizations of potential radiation exposure during polar or near-polar flight.
While the QUB study implied that the combination of existing biosensor technology could be equivalent to a Tricorder, the direct development of such a device has been the subject of its own specific challenge. In 2012, the Qualcomm Tricorder XPRIZE competition was launched, asking competitors to develop a user-friendly device that could accurately diagnose 13 health conditions and capture 5 real-time health vital signs. The winner of the prize awarded in 2017 was Pennsylvania-based family team called Final Frontier Medical Devices, now Basil Leaf Technologies, for their DxtER device. According to their website, the sensors inside DxtER can be used independently, one of which is in a Phase 1 Clinical Trial. The second place winner of the competition used a smartphone app to connect its health testing modules and generate a diagnosis from the data acquired from the user.
The march continues to develop the technology humans will need to safely explore regions beyond Earth orbit. Space is hard, but it was hard before we went there the first time, and it was hard before we put humans on the moon. There may be plenty of challenges to overcome, but as the Queen’s University Belfast study demonstrates, we may already be solving them. It’s just a matter of realizing it and expanding on it.
Elon Musk
Tesla says it denied Musk CEO replacement report before it was published
Tesla says it responded to the WSJ’s request for comment, denying that it was in search of a new CEO to replace Elon Musk.

Tesla said that it denied seeking a replacement for CEO Elon Musk before a report was published claiming the company was considering a new frontman.
Last night, The Wall Street Journal reported that Tesla’s Board of Directors was looking for Musk’s replacement after he had devoted too much time to his role within the government. The publication revised its headline to the report no fewer than five times, initially stating the company was still seeking a replacement.
By the time the headline revisions were complete, it had outlined that Tesla had looked for a replacement a month ago, but had stopped its search following Musk’s commitment to Tesla during the company’s earnings call last month.
Shortly after the report surfaced, Board of Directors chairwoman Robyn Denholm officially issued a statement on behalf of Tesla:
“Earlier today, there was a media report erroneously claiming that the Tesla Board had contacted recruitment firms to initiate a CEO search at the company. This is absolutely false (and this was communicated to the media before the report was published). The CEO of Tesla is Elon Musk and the Board is highly confident in his ability to continue executing on the exciting growth plan ahead. – Robyn Denholm.”
Tesla Board Chair slams Wall Street Journal over alleged CEO search report
Interestingly, Denholm’s statement indicates it had responded to a request for comment from the Wall Street Journal before the report was published. This is especially interesting because Tesla does not typically respond to media outreach, as it dissolved its media department several years ago.
Tesla typically makes its statements publicly on X.
Musk also responded to the report, indicating that the WSJ had committed an “extremely bad breach of ethics” by publishing a “deliberately false article” that did not include Tesla’s “unequivocal denial beforehand.”
News
Robotaxis are already making roads safer, Waymo report reveals
Waymo Driver is already reducing severe crashes and enhancing the safety of vulnerable road users.

Industry leaders such as Elon Musk have always maintained that autonomous robotaxis will make roads safer. A recent blog post from Waymo about the safety of its self-driving cars suggests that Musk’s sentiments are on point.
Way More Safety
Waymo Driver is already reducing severe crashes and enhancing the safety of vulnerable road users. As per a new research paper set for publication in the Traffic Injury Prevention Journal, Waymo Driver had outperformed human drivers in safety, particularly for vulnerable road users (VRUs).
Over 56.7 million miles, compared to human drivers, Waymo Driver achieved a 92% reduction in pedestrian injury crashes. It also saw 82% fewer crashes with injuries with cyclists and 82% fewer crashes with injuries with motorcyclists. Waymo Driver also slashed injury-involving intersection crashes by 96%, which are a leading cause of severe road harm for human drivers. Waymo Driver saw 85% fewer crashes with suspected serious or worse injuries as well.
What They Are Saying
Mauricio Peña, Waymo’s Chief Safety Officer, was optimistic about Waymo Driver’s results so far. “It’s exciting to see the real positive impact that Waymo is making on the streets of America as we continue to expand. This research reinforces the growing evidence that the Waymo Driver is playing a crucial role in reducing serious crashes and protecting all road users,” the Chief Safety Officer noted.
Jonathan Adkins, Chief Executive Officer at Governors Highway Safety Association, also noted that Waymo’s results are very encouraging. “It’s encouraging to see real-world data showing Waymo outperforming human drivers when it comes to safety. Fewer crashes and fewer injuries — especially for people walking and biking — is exactly the kind of progress we want to see from autonomous vehicles,” Adkins stated.
Elon Musk
Tesla hints at June 1 launch of Robotaxi platform in Austin
Tesla has hinted at a potential launch date for the Robotaxi service in Austin, Texas.

Tesla just dropped its biggest hint yet about the potential launch date of its Robotaxi ride-hailing platform in Austin, Texas, shedding more light on when to expect it to take off.
In preparation for the ride-hailing service to launch, Tesla has been in talks with the City of Austin for months. It has also spent recent months bolstering its Full Self-Driving suite, aiming for it to handle initially supervised rides with the use of teleoperators to keep things safe and dependable, at least early on.
The company has also said that it expects the Robotaxi service, which will drive passengers in Tesla Model Y vehicles to start, to launch in Austin in June. However, Tesla has not given an exact date.
Now, Tesla is hinting that Robotaxi could launch on June 1, based on a very vague X post it published on May 1:
Of course, this is extremely speculative. However, it’s the first time Tesla has made any suggestions about a potential launch date, so it’s worth taking it seriously.
While the automaker has often missed timelines in the past, most notably the launch of a “feature-complete” Full Self-Driving platform, this is the first time we’ve seen Tesla be so adamant and truly reiterate a target date.
Tesla has not shied away from this June date for the Robotaxi launch yet, something that is worth noting as we move closer to June. All signs point toward Tesla being able to come through on this timeline, and it could be one of its biggest accomplishments yet on the grand scheme of things. The Robotaxi rollout will be controlled and small to start, the company noted on its most recent Earnings Call.
CEO Elon Musk said:
“The team and I are laser-focused on bringing robotaxi to Austin in June. Unsupervised autonomy will first be solved for the Model Y in Austin.”
At first, it also seems as if the first Robotaxi rides will be available to a select group, as Musk said the ability to order one will not be available to the general public until later in the month. He also said the initial fleet will be between 10 and 20 vehicles:
“Yeah. We’re still debating the exact number to start off on day one, but it’s, like, I don’t know, maybe 10 or 20 vehicles on day one. And watch it carefully. They scale it up rapidly after that. So, we want to make sure that you’re paying very close attention the first time this happens. But, yeah, you will be able to — end of end of June or July, just go to Austin and order a Tesla for autonomous drive.”
While the June 1st date of the Robotaxi launch is extremely speculative, Tesla seems convinced that its vehicles could already handle this task. It would be something to see them come through on this date, especially on the first day of the month.
-
News1 week ago
Tesla’s Hollywood Diner is finally getting close to opening
-
Elon Musk2 weeks ago
Tesla doubles down on Robotaxi launch date, putting a big bet on its timeline
-
News7 days ago
Tesla is trying to make a statement with its Q2 delivery numbers
-
Investor's Corner1 week ago
LIVE BLOG: Tesla (TSLA) Q1 2025 Company Update and earnings call
-
SpaceX2 weeks ago
SpaceX pitches subscription model for Trump’s Golden Dome
-
News4 days ago
NY Democrats are taking aim at Tesla direct sales licenses in New York
-
News2 weeks ago
Swedish unions upset after Tesla opens two new Superchargers
-
Elon Musk2 weeks ago
Tesla Semi fleet from Frito-Lay gets more charging at Bakersfield factory