News
ICBM rocket shopping: Elon Musk did it in Russia, so why not do it in the United States?
The ultimate goal of launching rockets is to get us exploring and building in space, not picking winners and losers. Simply put, if you can’t compete with the mousetraps on the market, you haven’t actually built a better mousetrap. Repurposed ICBM motors for rocket engines are not the problem.

Gemini 10 launches on a modified Titan ICBM motor. Credit: NASA on The Commons.
A Disagreement Among Star Travelers
There’s a debate going on among the government “powers that be” and commercial space companies over the use of excess intercontinental ballistic missile (ICBM) motors to launch rockets. Currently, these motors are banned from being used for commercial purposes, although military and civil launches are okay.
One side argues that the ban should be lifted because
- the missile parts provide a reliable, cost-effective means for space access; and
- it benefits taxpayers through recouped monies from private sales.
The other side wants the ban maintained because
- flooding the market with cheaper, “off-the-shelf” rocket parts could hinder the innovation and development of new rocket technologies by lowering demand for them; and
- larger companies will take away their market share through easy access to cheaper motors.
This same debate created the ban in the 1990s, and it should be mentioned that the main proponent of lifting the ban was a big part of passing it in the first place. It is also only fair to mention that this main proponent is a very large, established rocket company while the opponents are mostly smaller competitors.
Putting It All Into Perspective
First, it’s important to consider a reality-based context before taking a position on this. Absent another world war, globalization is here to stay, meaning that if a company in the United States cannot offer launch services at a
competitive price point, their potential customers will go elsewhere. Since these customers are not exclusively American companies, U.S. lawmakers cannot simply make the problem go away through legislation by restricting the nationality of launch providers.
Second, it’s important to frame this issue using marketplace case studies relevant to the situation found here. Old technology is constantly giving way to updated and new technology, demonstrating that innovation is driven by a variety of factors, not just the pure need for a technology to exist.
Finally, it’s important to fully understand the motives of all parties involved. The commercial space industry is, by definition, business-oriented. At a fundamental level, all parties involved are concerned primarily with their own best interest, i.e., their ability to make a profit.
Space Access Should Be More Affordable
In my opinion, the ban should be lifted, as my position on issues like this will always tend towards expanding access rather than restricting it. Achieving democratized space travel will require affordable accessibility to space, and one of the best ways to drive costs down is to not spend valuable resources “reinventing the wheel” if existing resources work well for current needs. This isn’t to say that innovation isn’t necessary, but rather that different
missions have different needs, and the existence of one option doesn’t preclude the need for other options.
The car industry is a good case study to compare to. The fact that older cars
exist does not prevent newer, generally improved cars from being developed and sold each year. Gasoline is a proven standard to fuel vehicles, but the demand for electric vehicles is getting louder. It’s the demand for better technology that moves this process of innovation forward.
The companies involved in this debate are profit-driven. What would motivate a company to keep inexpensive, proven technology out of a market they were competing in? In my opinion, the question itself contains the answer. Competition is a proven way to drive development, and the argument that a market flooded with competition would hurt competition has somewhat circular logic.
I do think it is fair to be concerned that the nature of competing against government for a product undermines the concept of a fair market; however, the global nature of launch services and the expanding need for more innovative solutions, i.e., more powerful rocket engines for the upcoming long-distance space missions, mitigate this concern.
In the current environment, American launch providers are losing business to non-American launch providers, most of which are either heavily subsidized by their governments or are the governments themselves. In order for American launch providers to afford the costs of innovation and development, they need to be able to fairly compete in the global market for a customer base. It is also important to note that the rocket motor is only one part of the process of providing launch services. In that light, opening the ICBM market to American launch providers doesn’t make the American government the competitor as much as it is a retailer selling certain parts which make up a whole rocket product.
Elon Musk, Russians, and ICBM Engines (Oh, my!)
To frame this debate in another light, recall that Elon Musk’s initial space dreams involved purchasing ICBM motors from Russia to send dehydrated plant seeds to Mars. He wanted to accomplish something inspirational without diving head first into the business of building rockets. Fortunately for us, SpaceX was born through that process; however,
imagine a future, space-inspired millionaire looking to make a similar contribution except the purpose would ultimately be commercial. Why deny the option of a rocket built with “off-the-shelf” parts? There aren’t many Elon Musk types out there willing to invest most of their own personal fortune for a ten percent chance of success at building a rocket engine from scratch, but every time technology is sent into space, it moves us forward.
Elon Musk’s ICBM story isn’t the only thing worth noting in this debate. Unfortunately for supporters of the ban, SpaceX essentially renders their argument moot because SpaceX’s innovation and resulting lower launch price tag are what’s making Russian space authorities somewhat cranky about the business they’re usurping from them. Clearly, innovation is still possible even with other ICBM-based rockets on the market.
In Summary
The ultimate goal of launching rockets is to get us exploring and building in space, and this is hindered when the regulatory environment has the effect of hand picking winners and losers. Restricting ICBM motors from being on the commercial market does exactly that. This doesn’t advance the long term goals of space exploration. It only interferes with getting technology into orbit and beyond by restricting the capital available to develop better technology.
The argument that innovation is hurt by a market full of ICBM motors is one based on a desire to control market forces in an unfair way. Simply put, if you can’t compete with the mousetraps on the market, you haven’t actually built a better mousetrap, and there’s nothing to prevent you from selling existing mousetraps in service packages while you develop better ones.
Granted, as Elon Musk has reminded us in several interviews, rockets are hard, making the business of rockets even harder. Imagine, however, if the government banned access to all major highways, an existing tax-funded resource, because there was a need for a surface material that was resistant to pot holes and existing asphalt mixes hindered its development. It doesn’t take a rocket scientist to see what a bad idea that would be and what type of impact it would have on those needing the highways to conduct their business, especially while other countries still had their road systems up and running.
Autobahn, anyone?
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.