News
NASA head hints that reusable rocket cos. like SpaceX will enable Moon return
In a series of thoroughly unexpected and impassioned introductory remarks at one of several 2018 Advisory Council meetings, NASA administrator Jim Bridenstine bucked at least two decades of norms by all but explicitly stating that reusable rockets built by innovative private companies like SpaceX and Blue Origin will enable the true future of space exploration.
Incredibly, over the course his fascinating hour-long prelude, Bridenstine effectively mentioned NASA’s own SLS rocket and Orion spacecraft – under development for the last decade at a cost of at least several tens of billions of dollars – a total of one time each. Instead, heavily emphasizing the absolute necessity that NASA’s next major human exploration project be sustainable, the administrator spoke at length about the foundational roles that international and domestic space agencies and private companies will need to take on in order to make NASA’s on-paper return to the Moon both real, successful, and useful.
Aside from his arguably brave (but spot-on) decision to all but ignore Boeing and Northrop Grumman’s SLS rocket and Lockheed Martin’s Orion spacecraft over the course of an hour spent speaking about the future of NASA’s human exploration of the Moon and on spaceflight more generally, Bridenstine had nothing but praise for recent successes in the American aerospace industry.
Most notably, he spoke about his belief – at least partially stemming from an executive order requiring it – that the only way NASA can seriously succeed and continue to lead the world in the task of human space exploration is to put an extreme focus on sustainability. Judging from his comments on the matter, the new NASA/Federal buzzword of choice is just a different way to describe hardware reusability, although it certainly leaves wiggle room for more than simply avoiding expendable rocket hardware.
“It’s on me to figure out how to [return to the Moon] sustainably. … And this time, when we go, we’re gonna go to stay. So how do we do go sustainably? Well, [we take] advantage of capabilities that didn’t exist in this country even five or ten years ago. We have commercial companies that can do things that weren’t possible even just a few years ago … to help develop this sustainable [Moon exploration] architecture.” – NASA Administrator Jim Bridenstine, 08/29/2018

While it might not look like much (aside from a “no duh” statement) to anyone unfamiliar with the trials and tribulations of NASA bureaucracy and politicking, this quote – directed at an audience of senior NASA scientists and managers and independent experts – is absolutely extraordinary in the context of NASA’s history and the formulaic eggshells NASA administrators have traditionally been forced to walk on when discussing American rocketry.
Not only is SLS/Orion utterly and conspicuously absent in a response to the “how” of starting a new wave of lunar exploration, but Bridenstine also almost explicitly names Blue Origin and SpaceX as torchbearers of the sort of exceptional technological innovation that might revolutionize humanity’s relationship with space. By referring specifically to “commercial companies that can do things that weren’t possible even just a few years ago”, the only obvious answers in the context of serious human exploration on and around the Moon are Blue Origin and SpaceX, both of which managed their first commercial rocket landings in late 2015.
Bridenstine went even further still, noting that NASA will need not just reusable rockets for this sustainable lunar exploration, but also reusable orbital tugboats (space tugs) to sustainably ferry both humans and cargo to and from Earth and the Moon and reusable lunar landers capable of many trips back and forth from space stations orbiting the moon. At one point, he even used SpaceX CEO Elon Musk’s (in)famous and well-worn analogy of commercial airlines to emphasize the insanity of not using reusable rockets:
“We have reusable rockets [now]… Imagine if you flew here across the country to [NASA Ames] in a 737 and when the mission was over, you threw the airplane away. How many of you would have flown here?” – NASA Administrator Jim Bridenstine, 08/29/2018
At today's NASA Advisory Council (NAC) meeting, Administrator Jim Bridenstine says the next hop to the moon is going to be sustainable – and will require reusable spaceflight hardware. Uses the same airplane analogy @ElonMusk does when it comes to explaining advantages.
— Emre Kelly (@EmreKelly) August 29, 2018
Reusable rockets lead the charge
It may be generous to include Blue Origin side by side with SpaceX, given the fact that its New Shepard rocket is extremely small and very suborbital, but the company does have eyes specifically set lunar landers and outposts (a project called Blue Moon) and is developing a large and reusable orbital-class rocket (New Glenn) set to debut in the early 2020s.
- Falcon Heavy’s side boosters seconds away from near-simultaneous landings at Landing Zones 1 and 2. (SpaceX)
- We’re not here just yet, but SpaceX is pushing hard to build BFR and get humanity to Mars as quickly as practicable. (SpaceX)
- Blue Origin’s aspirational future, the highly reusable BE-4 powered New Glenn rocket. (Blue Origin)
- Blue Origin’s Blue Moon concept, set to begin experimental lunar landings as early as 2022 or 2023. (Blue Origin)
SpaceX, while focused on Mars colonization, has also expressed a willingness to participate in any sort of lunar exploration that NASA or other international space agencies might have interest in. Currently in the middle of developing its own massive and fully reusable rocket, known as the Big F_____ Rocket (BFR), SpaceX nevertheless already has a flight-tested, highly successfully, and unbeatably cost-effective family of reusable Falcon rockets capable of affordably launching significant mass to the Moon. In fact, both NASA and ESA (European Space Agency) are already seriously considering SpaceX’s Falcon Heavy as the launch vehicle of choice for several critical pieces of a Moon-orbiting space station, expected to launch no earlier than the early to mid-2020s.
Whether or not Bridenstine’s incredible and eloquent statements translate into tangible changes to NASA’s long-term strategy, it’s quite simply refreshing to hear a senior NASA executive – let alone the administrator – speak freely and rationally about the reality of what is needed to enable a truly new era of human spaceflight and exploration.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
News
Tesla Model Y leads South Korea’s EV growth in 2025
Data from the Korea Automobile and Mobility Industry Association showed that the Tesla Model Y emerged as one of the segment’s single biggest growth drivers.
South Korea’s electric vehicle market saw a notable rise in 2025, with registrations rising more than 50% and EV penetration surpassing 10% for the first time.
Data from the Korea Automobile and Mobility Industry Association showed that the Tesla Model Y, which is imported from Gigafactory Shanghai, emerged as one of the segment’s single biggest growth drivers, as noted in a report from IT Home News.
As per the Korea Automobile and Mobility Industry Association’s (KAMA) 2025 Korea Domestic Electric Vehicle Market Settlement report, South Korea registered 220,177 new electric vehicles in 2025, a 50.1% year-over-year increase. EV penetration also reached 13.1% in the country, entering double digits for the first time.
The Tesla Model Y played a central role in the market’s growth. The Model Y alone sold 50,397 units during the year, capturing 26.6% of South Korea’s pure electric passenger vehicle market. Sales of the Giga Shanghai-built Model Y increased 169.2% compared with 2024, driven largely by strong demand for the all-electric crossover’s revamped version.
Manufacturer performance reflected a tightly contested market. Kia led with 60,609 EV sales, followed closely by Tesla at 59,893 units and Hyundai at 55,461 units. Together, the three brands accounted for nearly 80% of the country’s total EV sales, forming what KAMA described as a three-way competitive market.
Imported EVs gained ground in South Korea in 2025, reaching a market share of 42.8%, while the share of domestically produced EVs declined from 75% in 2022 to 57.2% last year. Sales of China-made EVs more than doubled year over year to 74,728 units, supported in no small part by Tesla and its Model Y.
Elon Musk, for his part, has praised South Korean customers and their embrace of the electric vehicler maker. In a reply on X to a user who noted that South Koreans are fond of FSD, Musk stated that, “Koreans are often a step ahead in appreciating new technology.”
News
Samsung’s Tesla AI5/AI6 chip factory to start key equipment tests in March: report
Samsung Electronics seems to be ramping its efforts to start operations at its Taylor, Texas semiconductor plant.
Samsung Electronics seems to be ramping its efforts to start operations at its Taylor, Texas semiconductor plant, which will produce Tesla’s next-generation AI5 chip.
Preparing for Tesla’s AI5/AI6 chips
As per a report by Sina Finance, Samsung Electronics is looking to begin trial operations of extreme ultraviolet (EUV) lithography equipment at its Taylor facility in March. These efforts are reportedly intended to support the full production of Tesla’s AI5 chips starting in the latter half of 2026.
The Taylor factory, Samsung’s first wafer fabrication plant in the United States, covers roughly 4.85 million square meters and is nearing completion. Media reports, citing contractors, have estimated that about 7,000 workers now work on the factory, about 1,000 of whom are reportedly working from the facility’s office building.
Samsung is reportedly preparing to apply for a temporary occupancy permit, which would allow production to begin before the plant is fully completed.
Tesla’s aggressive AI chip roadmap
Elon Musk recently stated that Tesla’s next-generation AI5 chip is nearly complete, while early development on its successor, AI6, is already underway. Musk shared the update in a post on X, which also happened to be a recruiting message for engineers.
As per Musk, Tesla is looking to iterate its in-house AI chips on an accelerated timeline, with future generations, including AI7, AI8, and AI9, targeting a roughly nine-month design cycle. He also stated that the rapid cadence could allow Tesla’s chips to become the highest-volume AI processors in the world.
Previous reports have indicated that Samsung Electronics would be manufacturing Tesla’s AI5 chip, alongside its rival, Taiwan Semiconductor Manufacturing Company (TSMC). The two suppliers are expected to produce different versions of Tesla’s AI5 chip, with TSMC using a 3nm process and Samsung targeting 2nm production.
Elon Musk
Elon Musk’s Boring Company studying potential Giga Nevada tunnel: report
The early-stage feasibility work was funded by a state-affiliated economic group as officials searched for alternatives to worsening traffic and accidents along Interstate 80.
Elon Musk’s tunneling startup, The Boring Company, has been studying a potential tunnel system connecting Reno to Tesla Gigafactory Nevada, as per documents obtained by Fortune. The early-stage feasibility work was funded by a state-affiliated economic group as officials searched for alternatives to worsening traffic and accidents along Interstate 80.
Potential Giga Nevada tunnel
Documents reviewed by Fortune showed that The Boring Company received $50,000 in October to produce conceptual designs and a feasibility report for a tunnel beneath a nine-mile stretch of highway leading to Gigafactory Nevada. The payment came from the Economic Development Authority of Western Nevada (EDAWN), a nonprofit that works with the state to attract and expand businesses.
The proposed tunnel was one of several transportation alternatives being explored to address rising congestion and accidents along Interstate 80, which serves the Tahoe-Reno Industrial Center. The massive industrial park houses major employers, including Tesla and Panasonic, both of which had been in contact with the Nevada Governor’s Office regarding potential transportation solutions.
Emails obtained through public records requests showed that Tesla and Panasonic have also supported a separate commuter rail study that would use existing freight rail alongside the Interstate. It remains unclear if The Boring Company’s feasibility report had been completed, and key details for the potential project, including tunnel length, cost, and if autonomous Teslas would be used, were not disclosed.

Relieving I-80 congestion
Traffic and accidents along I-80 have increased sharply as data centers and new businesses moved into the 107,000-acre industrial center. State transportation data showed that the number of vehicles traveling certain stretches of the highway during peak hours doubled between January and July 2025 alone. Roughly 22,000 employees commute daily to the industrial park, with nearly 8,000 working for Tesla and more than 4,000 for Panasonic at the Giga Nevada complex.
Bill Thomas, who runs the Regional Transportation Commission of Washoe County, shared his thoughts about safety concerns in the area. “At this point in time, there’s about (one accident) every other day,” he said. He also noted that he is supportive of any projects that could alleviate traffic and accidents on the Interstate.
“We’re not paying for it. I’m not involved in it. But I understand there are conversations exploring whether that could be done. If there’s a private solution that helps the problem and improves safety, as far as I’m concerned, more power to them,” Thomas stated.



