Connect with us

News

NASA aces most challenging Mars rover landing to date

Members of NASA’s Perseverance Mars rover team watch in mission control as the first images arrive moments after the spacecraft successfully touched down on Mars, Thursday, Feb. 18, 2021, at NASA's Jet Propulsion Laboratory. (Credit: NASA/Bill Ingalls)

Published

on

After a nearly 300 million mile (480 million kilometer), seven-month-long journey, the world watched as NASA’s Mars 2020 Perseverance mission successfully completed the most challenging and precise landing the agency has ever attempted on Thursday (Feb. 18). Perseverance is NASA’s fifth rover and overall ninth mission to successfully land on the Red Planet.

The first image of the Martian surface capture by NASA’s Perseverance rover moments after a successful touchdown on Mars. (Credit: NASA/JPL – Caltech)

On Thursday afternoon, the alien invader punched through the relatively thin Martian atmosphere streaking across the sky at a blazing 12,100 mph (19,500 kph). Then it shed a few layers, deployed the largest-ever supersonic parachute, and slowed down just enough to use a rocket-propelled crane to drop an autonomous, nuclear-powered, robotic astrobiologist called Perseverance on the surface of Mars.

Flawlessly completing the entry, descent, and landing sequence of its mission to land in Mars’ hostile Jezero Crater, NASA’s Mars 2020 Perseverance mission officially marked the completion of its interplanetary travel phase and began its mission to collect evidence of ancient, microbial Martian life.

Getting to Mars

On July 30, 2020, NASA’s Mars 2020 Perseverance mission launched aboard a United Launch Alliance Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Space Force Base. Aboard that rocket was NASA’s most ambitious Mars mission to date. The launch phase of the mission suffered a few minor delays ultimately shifting the launch date from July 18, 2020 to July 30, 2020. However, ULA’s Atlas V first stage rocket and Centaur upper stage delivered NASA’s Mars 2020 Perseverance mission into such an accurate trajectory that the 2,260 lb (1,025 kg) rover landed on its specified February 18 landing date despite the delays in the launch timeline.

In total, three missions to Mars – China’s Tianwen-1, the United Arab Emirates Hope Probe, and NASA’s Perseverance – left Earth in the summer of 2020. All three missions targeted to leave Earth prior to August to best take advantage of the minimal distance between the planets during what is called opposition. The opposition between Earth and Mars only occurs once every 22 months. If the Perseverance mission had missed its launch date it would’ve had to wait until 2022 for a chance to travel to the Red Planet.

An illustration of the route Mars 2020 takes to the Red Planet, including several trajectory correction maneuvers (TCMs) to adjust its flight path on the fly. (NASA/JPL-Caltech)

Entry, Descent, and Landing – a controlled disassembly

As Perseverance descended into the Martian atmosphere the Cruise Phase – hardware that propelled the spacecraft through space for seven months – was jettisoned. The Perseverance rover safely tucked inside the aeroshell and protected by a robust heat shield soared through the thin Martian atmosphere enduring an extreme amount of friction that produced heat energy that reached up to 2,370 degrees Fahrenheit (about 1,300 degrees Celsius).

This illustration depicts five major components of the Mars 2020 spacecraft. Top to bottom: cruise stage, backshell, descent stage, Perseverance rover and heat shield. The various components perform critical roles during the vehicle’s cruise to Mars and its dramatic Entry, Descent, and Landing. (Credit: NASA/JPL-Caltech)

Once through the period of peak heating the heat shield was jettisoned exposing Perseverance to the Martian environment for the first time. Then about 7 miles (11 kilometers) from the surface the largest supersonic parachute NASA has ever sent to another planet – 70.5 feet (21.5 meters) in diameter – was deployed drastically slowing the spacecraft.

While still descending, the controlled descent module – called the sky crane – separated from the backshell about 1.3 miles (2.1 kilometers) above the surface to free-fly in the Martian atmosphere. The descent module used a new landing technology called Terrain-Relative Navigation used a constant stream of visual input and guidance collected from the Vision Compute Element and Rover Compute Element to determine the safest reachable landing site.

In this illustration, NASA’s Perseverance rover gets its first look at the Martian surface below, after dropping its heat shield just under six minutes after entry into the Mars atmosphere. (Credit: NASA?JPL-Caltech)

The throttleable rockets on the powered descent module steered the rover to its landing spot in Mars’ Jezero Crater and slowed to approximately 1.7 mph (2.7 kph) about 66 feet (20 meters) above the Martian surface. Perseverance was then lowered using a system of Nylon cords which were autonomously severed upon touchdown. The final stage of the controlled disassembly was for the sky crane to throttle its rockets back up and fly away for a crash landing a safe distance from the rover.

Ultimately, the Perseverance rover landed about a kilometer south of the intended delta of the Jezero Crater.

Advertisement
An image released by NASA of the landing location of the Perseverance rover about a kilometer away from the delta of Mars’ Jezero Crater. (Credit: NASA/JPL-Caltech)

Perseverance made it to Mars, now what?

The second image of the Martian surface capture by NASA’s Perseverance rover moments after a successful touchdown on Mars. (Credit: NASA/JPL- Caltech)

Getting to Mars was only the first of many milestones that Perseverance is expected to achieve during its projected one Mars year-long mission – about 687 Earth days. Now that the rover has touched down the science will begin.

First and foremost once Perseverance stretched its legs, so to speak, the first event took place just minutes after landing. Perseverance captured photos of the Martian surface with a pair of engineering cameras called Hazard Cameras mounted to the front and back of the rover.

The upgraded Navigation and Hazard cameras feature the capability to capture imagery of the Martian surface in 20 megapixel high-definition resolution for the first time. In the coming days, more images will be relayed back to Earth taken with the rover’s Navigation cameras and Mastcam-Z.

This image presents a selection of the 23 cameras on NASA’s 2020 Mars rover. (Credit: NASA/JPL-Caltech)

Once on Mars, the control of the Perseverance rover was transitioned from NASA JPL’s EDL team to the Perseverance Surface team. The Surface Phase of the Mars 2020 mission – or the phase of the mission that consists of the four main science objectives – began about twenty minutes after the touchdown.

Perseverance was sent to Mars to determine whether life ever existed on Mars, characterize the climate, characterize the geology, and prepare for the eventual human exploration of Mars. To achieve these massive science goals, the robotic astrobiologist was sent with an impressive suite of scientific research tools. Over the next 30 Martian days – called sols – the rover will begin to unfurl and begin testing the various pieces of hardware in preparation for exploring the delta of Jezero Crater.

This diagram illustrated the many science research components that are included aboard the Mars 2020 Perseverance rover. (Credi: NASA/ JPL – Caltech)

Deploying the stowaway

Perseverance not only took a roving science lab to Mars, but it also took the first rotorcraft helicopter to be deployed to another planet dubbed Ingenuity. Ingenuity is a small double-bladed rotorcraft weighing only about 4 pounds (1.8 kilograms).

After the initial 30 Ssls of stretching its legs, Perseverance will travel a short distance to find a flat area of the Martian surface to deploy the Ingenuity helicopter. Once deployed, the Ingenuity team will have a technology demonstration window of approximately 30 sols to complete the first flight test of Ingenuity – the first time powered, controlled flight will be attempted on another planet.

Landing is just the beginning

Graphic detailing the sample return process. Credit: ESA

As exciting as landing on Mars was, it is only the beginning for the Mars 2020 Perseverance rover. The nuclear-powered astrobiology robot will spend the next Martian year excavating the surface of a very rich delta in the Jezero crater searching for the first evidence of ancient, microbial life.

Even more exciting is that Perseverance is only the first phase of a larger mission called the Mars Sample Return mission that will someday bring the excavated samples that Perseverance collects back to Earth in a joint effort between NASA and the European Space Agency.

Advertisement

Although the Perseverance mission is only intended to last one Martian year, Perseverance has the capacity to extend its mission to nearly 15 years thanks to its power source, a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) which produces a steady stream of electricity provided by the radioactive decay of plutonium-238. Perseverance could potentially outlast all of NASA’s other Mars missions.

Stay ahead of the curve and be the first to learn about new industry trends each week!

Follow along as our team gives you their take on the biggest stories of the week.
Advertisement
Comments

News

Tesla rolling out Robotaxi pilot in SF Bay Area this weekend: report

Similar to the Austin pilot, the Robotaxi rides will reportedly be a paid service.

Published

on

Credit: @AdanGuajardo/X

Tesla is reportedly preparing to launch a Robotaxi pilot program in the Bay Area this weekend, with invites to a select number of customers reportedly being sent out as early as this Friday.

The update was shared in a report from Insider, which cited an internal memo from the electric vehicle maker.

New Robotaxi service launch

According to Insider, the Robotaxi service in the Bay Area is set to launch as soon as Friday. Thus, some Tesla owners in the area should receive invites to use the driverless ride-hailing service. Similar to the Austin pilot, the Robotaxi rides will reportedly be a paid service.

The publication noted that the Robotaxi service’s geofence in its Bay Area launch will be quite large, as it will include Marin, much of the East Bay, San Francisco, and San Jose. This is not surprising as California has long been saturated with Teslas, and it is home to several of the electric vehicle maker’s key facilities.

Unlike the Austin pilot, the Tesla Robotaxi service’s pilot in the Bay Area will use safety drivers seated in the driver’s seat. These drivers will be able to manually take over using the steering wheel and brakes as needed. As per a spokesperson from the California DMV, the agency recently met with Tesla but the company is yet to submit a formal application to operate fully driverless cars. 

Advertisement

Tesla Robotaxi expansion

Interestingly enough, Tesla did tease the release of its Robotaxi service to the Bay Area in its second quarter earnings call. While discussing the service, Tesla VP of Autopilot/AI Software Ashok Elluswamy mentioned that the company will initially be rolling out Robotaxis with safety drivers in the San Francisco Bay Area. He did, however, also highlight that the electric vehicle maker is working hard to get government permission to release the service for consumers.

“The next thing to expand would be in the San Francisco Bay Area. We are working with the government to get approval here and, in the meanwhile, launch the service without the person in the driver seat just to expedite and while we wait for regulatory approval,” he stated.

Continue Reading

News

Tesla is ready with a perfect counter to the end of US EV tax credits

Tesla executives have mentioned that these more affordable models would resemble the company’s current lineup.

Published

on

Credit: Tesla Asia/X

The United States’ electric vehicle tax credit is coming to an end at the end of the third quarter. Tesla, the country’s leading electric vehicle maker, is ready to meet this challenge with a rather simple but clever counter. 

Tesla executives outlined this strategy in the recently held Q2 2025 earnings call.

End of the US EV tax credit

While Elon Musk has always maintained that he prefers a market with no EV tax credit, he also emphasized that he supports the rollback of any incentives given to the oil and gas industry. The Trump administration has not done this so far, instead focusing on the expiration of the $7,500 EV tax credit at the end of the third quarter.

Tesla has been going all-in on encouraging customers to purchase their vehicles in Q3 to take advantage of lower prices. The company has also implemented a series of incentives across all its offerings, from the Cybertruck to the Model 3. This, however, is not all, as the company seems to be preparing a longer-term solution to the expiration of the EV tax credit.

Affordable variants

During the Q2 2025 earnings call, Vice President of Vehicle Engineering Lars Moray stated that Tesla really did start the production of more affordable models in June. Quality builds of these vehicles are being ramped this quarter, with the goal of optimizing production over the remaining months of the year. If Tesla is successful, these models will be available for everyone in Q4. 

Advertisement

“We started production in June, and we’re ramping quality builds and things around the quarter. And given that we started in North America and our goal is to maximize production with a higher rate. So starting Q3, we’re going to keep pushing hard on our current models to avoid complexity… We’ll be ready with new, more affordable models available for everyone in Q4.,” Moravy stated. 

These comments suggest that Tesla should be able to offer vehicles that are competitively priced even after the EV tax credit has been phased out. Interestingly enough, previous comments from Tesla executives have mentioned that these more affordable models would resemble the company’s current lineup. This suggests that the more affordable models may indeed be variations of the Model Y and Model 3, but offered at a lower price.

Continue Reading

Elon Musk

Elon Musk reveals Tesla’s next Robotaxi expansion in more ways than one

Tesla Robotaxi is growing in more ways than one. Tesla wants to expand and hopes to reach half the U.S. population by the end of the year.

Published

on

Credit: Tesla

Tesla CEO Elon Musk revealed the company’s plans for its next expansion of the Robotaxi in terms of both the geofence in Austin and the platform overall, as it looks to move to new areas outside of Texas.

Tesla launched the Robotaxi platform last month on June 22, and has since expanded both the pool of users and the area that the driverless Model Y vehicles can travel within.

The first expansion of the geofence caught the attention of nearly everyone and became a huge headline as Tesla picked a very interesting shape for the new geofence, resembling male reproductive parts.

The next expansion will likely absolve this shape. Musk revealed last night that the new geofence will be “well in excess of what competitors are doing,” and it could happen “hopefully in a week or two.”

Musk’s full quote regarding the expansion of the geofence and the timing was:

“As some may have noted, we have already expanded our service area in Austin. It’s bigger and longer, and it’s going to get even bigger and longer. We are expecting to greatly increase the service area to well in excess of what competitors are doing, hopefully in a week or two.”

The expansion will not stop there, either. As Tesla has operated the Robotaxi platform in Austin for the past month, it has been working with regulators in other areas, like California, Arizona, Nevada, and Florida, to get the driverless ride-hailing system activated in more U.S. states.

Tesla confirmed that they are in talks with each of these states regarding the potential expansion of Robotaxi.

Musk added:

“As we get the approvals and prove out safety, we will be launching the autonomous ride-hailing across most of the country. I think we will probably have autonomous ride-hailing in probably half the population of the US by the end of the year.”

We know that Tesla and Musk have been prone to aggressive and sometimes outlandish timelines regarding self-driving technology specifically. Regulatory approvals could happen by the end of the year in several areas, and working on these large metros is the best way to reach half of the U.S. population.

Tesla said its expansion of the geofence in Austin is conservative and controlled due to its obsession with safety, even admitting at one point during the Earnings Call that they are being “paranoid.” Expanding the geofence is necessary, but Tesla realizes any significant mistake by Robotaxi could take it back to square one.

Continue Reading

Trending