Connect with us

News

NASA aces most challenging Mars rover landing to date

Members of NASA’s Perseverance Mars rover team watch in mission control as the first images arrive moments after the spacecraft successfully touched down on Mars, Thursday, Feb. 18, 2021, at NASA's Jet Propulsion Laboratory. (Credit: NASA/Bill Ingalls)

Published

on

After a nearly 300 million mile (480 million kilometer), seven-month-long journey, the world watched as NASA’s Mars 2020 Perseverance mission successfully completed the most challenging and precise landing the agency has ever attempted on Thursday (Feb. 18). Perseverance is NASA’s fifth rover and overall ninth mission to successfully land on the Red Planet.

The first image of the Martian surface capture by NASA’s Perseverance rover moments after a successful touchdown on Mars. (Credit: NASA/JPL – Caltech)

On Thursday afternoon, the alien invader punched through the relatively thin Martian atmosphere streaking across the sky at a blazing 12,100 mph (19,500 kph). Then it shed a few layers, deployed the largest-ever supersonic parachute, and slowed down just enough to use a rocket-propelled crane to drop an autonomous, nuclear-powered, robotic astrobiologist called Perseverance on the surface of Mars.

Flawlessly completing the entry, descent, and landing sequence of its mission to land in Mars’ hostile Jezero Crater, NASA’s Mars 2020 Perseverance mission officially marked the completion of its interplanetary travel phase and began its mission to collect evidence of ancient, microbial Martian life.

Getting to Mars

On July 30, 2020, NASA’s Mars 2020 Perseverance mission launched aboard a United Launch Alliance Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Space Force Base. Aboard that rocket was NASA’s most ambitious Mars mission to date. The launch phase of the mission suffered a few minor delays ultimately shifting the launch date from July 18, 2020 to July 30, 2020. However, ULA’s Atlas V first stage rocket and Centaur upper stage delivered NASA’s Mars 2020 Perseverance mission into such an accurate trajectory that the 2,260 lb (1,025 kg) rover landed on its specified February 18 landing date despite the delays in the launch timeline.

In total, three missions to Mars – China’s Tianwen-1, the United Arab Emirates Hope Probe, and NASA’s Perseverance – left Earth in the summer of 2020. All three missions targeted to leave Earth prior to August to best take advantage of the minimal distance between the planets during what is called opposition. The opposition between Earth and Mars only occurs once every 22 months. If the Perseverance mission had missed its launch date it would’ve had to wait until 2022 for a chance to travel to the Red Planet.

An illustration of the route Mars 2020 takes to the Red Planet, including several trajectory correction maneuvers (TCMs) to adjust its flight path on the fly. (NASA/JPL-Caltech)

Entry, Descent, and Landing – a controlled disassembly

As Perseverance descended into the Martian atmosphere the Cruise Phase – hardware that propelled the spacecraft through space for seven months – was jettisoned. The Perseverance rover safely tucked inside the aeroshell and protected by a robust heat shield soared through the thin Martian atmosphere enduring an extreme amount of friction that produced heat energy that reached up to 2,370 degrees Fahrenheit (about 1,300 degrees Celsius).

This illustration depicts five major components of the Mars 2020 spacecraft. Top to bottom: cruise stage, backshell, descent stage, Perseverance rover and heat shield. The various components perform critical roles during the vehicle’s cruise to Mars and its dramatic Entry, Descent, and Landing. (Credit: NASA/JPL-Caltech)

Once through the period of peak heating the heat shield was jettisoned exposing Perseverance to the Martian environment for the first time. Then about 7 miles (11 kilometers) from the surface the largest supersonic parachute NASA has ever sent to another planet – 70.5 feet (21.5 meters) in diameter – was deployed drastically slowing the spacecraft.

While still descending, the controlled descent module – called the sky crane – separated from the backshell about 1.3 miles (2.1 kilometers) above the surface to free-fly in the Martian atmosphere. The descent module used a new landing technology called Terrain-Relative Navigation used a constant stream of visual input and guidance collected from the Vision Compute Element and Rover Compute Element to determine the safest reachable landing site.

Advertisement
In this illustration, NASA’s Perseverance rover gets its first look at the Martian surface below, after dropping its heat shield just under six minutes after entry into the Mars atmosphere. (Credit: NASA?JPL-Caltech)

The throttleable rockets on the powered descent module steered the rover to its landing spot in Mars’ Jezero Crater and slowed to approximately 1.7 mph (2.7 kph) about 66 feet (20 meters) above the Martian surface. Perseverance was then lowered using a system of Nylon cords which were autonomously severed upon touchdown. The final stage of the controlled disassembly was for the sky crane to throttle its rockets back up and fly away for a crash landing a safe distance from the rover.

Ultimately, the Perseverance rover landed about a kilometer south of the intended delta of the Jezero Crater.

An image released by NASA of the landing location of the Perseverance rover about a kilometer away from the delta of Mars’ Jezero Crater. (Credit: NASA/JPL-Caltech)

Perseverance made it to Mars, now what?

The second image of the Martian surface capture by NASA’s Perseverance rover moments after a successful touchdown on Mars. (Credit: NASA/JPL- Caltech)

Getting to Mars was only the first of many milestones that Perseverance is expected to achieve during its projected one Mars year-long mission – about 687 Earth days. Now that the rover has touched down the science will begin.

First and foremost once Perseverance stretched its legs, so to speak, the first event took place just minutes after landing. Perseverance captured photos of the Martian surface with a pair of engineering cameras called Hazard Cameras mounted to the front and back of the rover.

The upgraded Navigation and Hazard cameras feature the capability to capture imagery of the Martian surface in 20 megapixel high-definition resolution for the first time. In the coming days, more images will be relayed back to Earth taken with the rover’s Navigation cameras and Mastcam-Z.

This image presents a selection of the 23 cameras on NASA’s 2020 Mars rover. (Credit: NASA/JPL-Caltech)

Once on Mars, the control of the Perseverance rover was transitioned from NASA JPL’s EDL team to the Perseverance Surface team. The Surface Phase of the Mars 2020 mission – or the phase of the mission that consists of the four main science objectives – began about twenty minutes after the touchdown.

Perseverance was sent to Mars to determine whether life ever existed on Mars, characterize the climate, characterize the geology, and prepare for the eventual human exploration of Mars. To achieve these massive science goals, the robotic astrobiologist was sent with an impressive suite of scientific research tools. Over the next 30 Martian days – called sols – the rover will begin to unfurl and begin testing the various pieces of hardware in preparation for exploring the delta of Jezero Crater.

Advertisement
This diagram illustrated the many science research components that are included aboard the Mars 2020 Perseverance rover. (Credi: NASA/ JPL – Caltech)

Deploying the stowaway

Perseverance not only took a roving science lab to Mars, but it also took the first rotorcraft helicopter to be deployed to another planet dubbed Ingenuity. Ingenuity is a small double-bladed rotorcraft weighing only about 4 pounds (1.8 kilograms).

After the initial 30 Ssls of stretching its legs, Perseverance will travel a short distance to find a flat area of the Martian surface to deploy the Ingenuity helicopter. Once deployed, the Ingenuity team will have a technology demonstration window of approximately 30 sols to complete the first flight test of Ingenuity – the first time powered, controlled flight will be attempted on another planet.

Landing is just the beginning

Graphic detailing the sample return process. Credit: ESA

As exciting as landing on Mars was, it is only the beginning for the Mars 2020 Perseverance rover. The nuclear-powered astrobiology robot will spend the next Martian year excavating the surface of a very rich delta in the Jezero crater searching for the first evidence of ancient, microbial life.

Even more exciting is that Perseverance is only the first phase of a larger mission called the Mars Sample Return mission that will someday bring the excavated samples that Perseverance collects back to Earth in a joint effort between NASA and the European Space Agency.

Although the Perseverance mission is only intended to last one Martian year, Perseverance has the capacity to extend its mission to nearly 15 years thanks to its power source, a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) which produces a steady stream of electricity provided by the radioactive decay of plutonium-238. Perseverance could potentially outlast all of NASA’s other Mars missions.

Stay ahead of the curve and be the first to learn about new industry trends each week!

Follow along as our team gives you their take on the biggest stories of the week.

Space Reporter.

Advertisement
Comments

News

Tesla Giga Berlin dispute against IG Metall union leads to investigation

As per a report from rbb24, police seized a laptop belonging to an IG Metall member at Tesla Giga Berlin on Tuesday afternoon.

Published

on

Credit: Tesla Manufacturing/X

German authorities have opened an investigation into an IG Metall union representative following allegations that a confidential works council meeting at Tesla’s Gigafactory Berlin was secretly recorded. The probe follows a criminal complaint filed by Tesla management last week.

As per a report from rbb24, police seized a laptop belonging to an IG Metall member at Tesla Giga Berlin on Tuesday afternoon. Prosecutors in Frankfurt (Oder) confirmed that an investigation is underway into a possible unauthorized audio recording of an internal works council meeting.

Under German law, recording a non-public meeting without consent may constitute a criminal offense.

Tesla stated that Gigafactory Berlin employees alerted management after allegedly discovering that an external union representative, who was attending the event as a guest, had recorded the session. Plant manager André Thierig stated in a post on X that the representative was “caught in action,” prompting the company to contact police and file a criminal complaint.

Advertisement

The seized device is now part of the investigation, and authorities will determine whether any unlawful recording had indeed occurred.

IG Metall has denied the accusation. In comments to German media, representatives rejected Tesla’s claim and described the electric vehicle maker’s allegation as an election campaign tactic ahead of upcoming works council elections.

The election at Tesla’s Grünheide plant is scheduled for March 2–4, 2026, with about 11,000 employees being eligible to vote. Regular works council elections in Germany are held every four years between March and May.

The incident comes amid tensions between Tesla and organized labor in Germany. While works councils operate independently from unions, IG Metall has been active at the plant and has previously criticized Tesla’s labor practices. Authorities, for their part, have not yet announced whether charges will be filed, though the investigation remains ongoing.

Advertisement
Continue Reading

News

Tesla rolls out xAI’s Grok to vehicles across Europe

The initial rollout includes the United Kingdom, Ireland, Germany, Switzerland, Austria, Italy, France, Portugal, and Spain.

Published

on

Tesla is rolling out Grok to vehicles in Europe. The feature will initially launch in nine European territories.

In a post on X, the official Tesla Europe, Middle East & Africa account confirmed that Grok is coming to Teslas in Europe. The initial rollout includes the United Kingdom, Ireland, Germany, Switzerland, Austria, Italy, France, Portugal, and Spain, and additional markets are expected to be added later.

Grok allows drivers to ask questions using real-time information and interact hands-free while driving. According to Tesla’s support documentation, Grok can also initiate navigation commands, enabling users to search for destinations, discover points of interest, and adjust routes without touching the touchscreen, as per the feature’s official webpage.

The system offers selectable personalities, ranging from “Storyteller” to “Unhinged,” and is activated either through the App Launcher or by pressing and holding the steering wheel’s microphone button.

Advertisement

Grok is currently available only on Model S, Model 3, Model X, Model Y, and Cybertruck vehicles equipped with an AMD infotainment processor. Vehicles must be running software version 2025.26 or later, with navigation command support requiring version 2025.44.25 or newer.

Drivers must also have Premium Connectivity or a stable Wi-Fi connection to use the feature. Tesla notes that Grok does not currently replace standard voice commands for vehicle controls such as climate or media adjustments.

The company has stated that Grok interactions are processed securely by xAI and are not linked to individual drivers or vehicles. Users do not need a Grok account or subscription to enable the feature at this time as well.

Continue Reading

News

Tesla ends Full Self-Driving purchase option in the U.S.

In January, Musk announced that Tesla would remove the ability to purchase the suite outright for $8,000. This would give the vehicle Full Self-Driving for its entire lifespan, but Tesla intended to move away from it, for several reasons, one being that a tranche in the CEO’s pay package requires 10 million active subscriptions of FSD.

Published

on

Credit: Tesla

Tesla has officially ended the option to purchase the Full Self-Driving suite outright, a move that was announced for the United States market in January by CEO Elon Musk.

The driver assistance suite is now exclusively available in the U.S. as a subscription, which is currently priced at $99 per month.

Tesla moved away from the outright purchase option in an effort to move more people to the subscription program, but there are concerns over its current price and the potential for it to rise.

In January, Musk announced that Tesla would remove the ability to purchase the suite outright for $8,000. This would give the vehicle Full Self-Driving for its entire lifespan, but Tesla intended to move away from it, for several reasons, one being that a tranche in the CEO’s pay package requires 10 million active subscriptions of FSD.

Although Tesla moved back the deadline in other countries, it has now taken effect in the U.S. on Sunday morning. Tesla updated its website to reflect this:

There are still some concerns regarding its price, as $99 per month is not where many consumers are hoping to see the subscription price stay.

Musk has said that as capabilities improve, the price will go up, but it seems unlikely that 10 million drivers will want to pay an extra $100 every month for the capability, even if it is extremely useful.

Instead, many owners and fans of the company are calling for Tesla to offer a different type of pricing platform. This includes a tiered-system that would let owners pick and choose the features they would want for varying prices, or even a daily, weekly, monthly, and annual pricing option, which would incentivize longer-term purchasing.

Although Musk and other Tesla are aware of FSD’s capabilities and state is is worth much more than its current price, there could be some merit in the idea of offering a price for Supervised FSD and another price for Unsupervised FSD when it becomes available.

Continue Reading