Connect with us

News

NASA aces most challenging Mars rover landing to date

Members of NASA’s Perseverance Mars rover team watch in mission control as the first images arrive moments after the spacecraft successfully touched down on Mars, Thursday, Feb. 18, 2021, at NASA's Jet Propulsion Laboratory. (Credit: NASA/Bill Ingalls)

Published

on

After a nearly 300 million mile (480 million kilometer), seven-month-long journey, the world watched as NASA’s Mars 2020 Perseverance mission successfully completed the most challenging and precise landing the agency has ever attempted on Thursday (Feb. 18). Perseverance is NASA’s fifth rover and overall ninth mission to successfully land on the Red Planet.

The first image of the Martian surface capture by NASA’s Perseverance rover moments after a successful touchdown on Mars. (Credit: NASA/JPL – Caltech)

On Thursday afternoon, the alien invader punched through the relatively thin Martian atmosphere streaking across the sky at a blazing 12,100 mph (19,500 kph). Then it shed a few layers, deployed the largest-ever supersonic parachute, and slowed down just enough to use a rocket-propelled crane to drop an autonomous, nuclear-powered, robotic astrobiologist called Perseverance on the surface of Mars.

Flawlessly completing the entry, descent, and landing sequence of its mission to land in Mars’ hostile Jezero Crater, NASA’s Mars 2020 Perseverance mission officially marked the completion of its interplanetary travel phase and began its mission to collect evidence of ancient, microbial Martian life.

Getting to Mars

On July 30, 2020, NASA’s Mars 2020 Perseverance mission launched aboard a United Launch Alliance Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Space Force Base. Aboard that rocket was NASA’s most ambitious Mars mission to date. The launch phase of the mission suffered a few minor delays ultimately shifting the launch date from July 18, 2020 to July 30, 2020. However, ULA’s Atlas V first stage rocket and Centaur upper stage delivered NASA’s Mars 2020 Perseverance mission into such an accurate trajectory that the 2,260 lb (1,025 kg) rover landed on its specified February 18 landing date despite the delays in the launch timeline.

In total, three missions to Mars – China’s Tianwen-1, the United Arab Emirates Hope Probe, and NASA’s Perseverance – left Earth in the summer of 2020. All three missions targeted to leave Earth prior to August to best take advantage of the minimal distance between the planets during what is called opposition. The opposition between Earth and Mars only occurs once every 22 months. If the Perseverance mission had missed its launch date it would’ve had to wait until 2022 for a chance to travel to the Red Planet.

An illustration of the route Mars 2020 takes to the Red Planet, including several trajectory correction maneuvers (TCMs) to adjust its flight path on the fly. (NASA/JPL-Caltech)

Entry, Descent, and Landing – a controlled disassembly

As Perseverance descended into the Martian atmosphere the Cruise Phase – hardware that propelled the spacecraft through space for seven months – was jettisoned. The Perseverance rover safely tucked inside the aeroshell and protected by a robust heat shield soared through the thin Martian atmosphere enduring an extreme amount of friction that produced heat energy that reached up to 2,370 degrees Fahrenheit (about 1,300 degrees Celsius).

This illustration depicts five major components of the Mars 2020 spacecraft. Top to bottom: cruise stage, backshell, descent stage, Perseverance rover and heat shield. The various components perform critical roles during the vehicle’s cruise to Mars and its dramatic Entry, Descent, and Landing. (Credit: NASA/JPL-Caltech)

Once through the period of peak heating the heat shield was jettisoned exposing Perseverance to the Martian environment for the first time. Then about 7 miles (11 kilometers) from the surface the largest supersonic parachute NASA has ever sent to another planet – 70.5 feet (21.5 meters) in diameter – was deployed drastically slowing the spacecraft.

While still descending, the controlled descent module – called the sky crane – separated from the backshell about 1.3 miles (2.1 kilometers) above the surface to free-fly in the Martian atmosphere. The descent module used a new landing technology called Terrain-Relative Navigation used a constant stream of visual input and guidance collected from the Vision Compute Element and Rover Compute Element to determine the safest reachable landing site.

In this illustration, NASA’s Perseverance rover gets its first look at the Martian surface below, after dropping its heat shield just under six minutes after entry into the Mars atmosphere. (Credit: NASA?JPL-Caltech)

The throttleable rockets on the powered descent module steered the rover to its landing spot in Mars’ Jezero Crater and slowed to approximately 1.7 mph (2.7 kph) about 66 feet (20 meters) above the Martian surface. Perseverance was then lowered using a system of Nylon cords which were autonomously severed upon touchdown. The final stage of the controlled disassembly was for the sky crane to throttle its rockets back up and fly away for a crash landing a safe distance from the rover.

Ultimately, the Perseverance rover landed about a kilometer south of the intended delta of the Jezero Crater.

Advertisement
An image released by NASA of the landing location of the Perseverance rover about a kilometer away from the delta of Mars’ Jezero Crater. (Credit: NASA/JPL-Caltech)

Perseverance made it to Mars, now what?

The second image of the Martian surface capture by NASA’s Perseverance rover moments after a successful touchdown on Mars. (Credit: NASA/JPL- Caltech)

Getting to Mars was only the first of many milestones that Perseverance is expected to achieve during its projected one Mars year-long mission – about 687 Earth days. Now that the rover has touched down the science will begin.

First and foremost once Perseverance stretched its legs, so to speak, the first event took place just minutes after landing. Perseverance captured photos of the Martian surface with a pair of engineering cameras called Hazard Cameras mounted to the front and back of the rover.

The upgraded Navigation and Hazard cameras feature the capability to capture imagery of the Martian surface in 20 megapixel high-definition resolution for the first time. In the coming days, more images will be relayed back to Earth taken with the rover’s Navigation cameras and Mastcam-Z.

This image presents a selection of the 23 cameras on NASA’s 2020 Mars rover. (Credit: NASA/JPL-Caltech)

Once on Mars, the control of the Perseverance rover was transitioned from NASA JPL’s EDL team to the Perseverance Surface team. The Surface Phase of the Mars 2020 mission – or the phase of the mission that consists of the four main science objectives – began about twenty minutes after the touchdown.

Perseverance was sent to Mars to determine whether life ever existed on Mars, characterize the climate, characterize the geology, and prepare for the eventual human exploration of Mars. To achieve these massive science goals, the robotic astrobiologist was sent with an impressive suite of scientific research tools. Over the next 30 Martian days – called sols – the rover will begin to unfurl and begin testing the various pieces of hardware in preparation for exploring the delta of Jezero Crater.

This diagram illustrated the many science research components that are included aboard the Mars 2020 Perseverance rover. (Credi: NASA/ JPL – Caltech)

Deploying the stowaway

Perseverance not only took a roving science lab to Mars, but it also took the first rotorcraft helicopter to be deployed to another planet dubbed Ingenuity. Ingenuity is a small double-bladed rotorcraft weighing only about 4 pounds (1.8 kilograms).

After the initial 30 Ssls of stretching its legs, Perseverance will travel a short distance to find a flat area of the Martian surface to deploy the Ingenuity helicopter. Once deployed, the Ingenuity team will have a technology demonstration window of approximately 30 sols to complete the first flight test of Ingenuity – the first time powered, controlled flight will be attempted on another planet.

Landing is just the beginning

Graphic detailing the sample return process. Credit: ESA

As exciting as landing on Mars was, it is only the beginning for the Mars 2020 Perseverance rover. The nuclear-powered astrobiology robot will spend the next Martian year excavating the surface of a very rich delta in the Jezero crater searching for the first evidence of ancient, microbial life.

Even more exciting is that Perseverance is only the first phase of a larger mission called the Mars Sample Return mission that will someday bring the excavated samples that Perseverance collects back to Earth in a joint effort between NASA and the European Space Agency.

Advertisement

Although the Perseverance mission is only intended to last one Martian year, Perseverance has the capacity to extend its mission to nearly 15 years thanks to its power source, a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) which produces a steady stream of electricity provided by the radioactive decay of plutonium-238. Perseverance could potentially outlast all of NASA’s other Mars missions.

Stay ahead of the curve and be the first to learn about new industry trends each week!

Follow along as our team gives you their take on the biggest stories of the week.
Advertisement
Comments

News

Tesla is already giving Robotaxi privileges hours after opening public app

This morning, Tesla launched the app in the Apple Store, giving iOS users the ability to download and join a waitlist in hopes of gaining access.

Published

on

tesla robotaxi app on phone
Credit: Tesla

Tesla is already giving Robotaxi privileges to those who downloaded the app and joined its waitlist just hours after it launched in the United States.

As the Robotaxi platform has been operating in Austin for several months, Tesla is now allowing the general public to download its app and call for a driverless ride in the city.

Tesla Robotaxi makes major expansion with official public app launch

The company previously sent invitations to select media outlets and Tesla influencers, seeking initial feedback on the performance of the Robotaxi platform.

There have been positive reviews, but, as with any Beta program, some mishaps have also occurred, although none have been significant.

As of the writing of this article, the City of Austin only lists one incident involving a Tesla Robotaxi, noting it as a “Safety Concern,” but not an accident or collision.

This morning, Tesla launched the app in the Apple Store, giving iOS users the ability to download and join a waitlist in hopes of gaining access.

Tesla is already granting Robotaxi access to several of those who have downloaded the app and gotten on the waitlist early:

With the launch of the public app, we were not too sure how soon Tesla would be able to initiate bringing more riders into the Robotaxi program. The immediate admittance for some riders just hours after the launch is a big positive and is surely a sign of strength for Tesla and its Robotaxi program.

What many will look for moving forward is the expansion of the geofence, which does not seem like a problem, as Tesla has already managed to do this on three occasions. The most recent expansion has expanded the service area to approximately 190 square miles.

People will also look for evidence of fleet expansion, a concern that has been a concern for many, especially since Tesla has not been completely transparent about it. They have revealed a recent service fleet growth of 50 percent, but there has been no specific number of vehicles mentioned.

Tesla reveals it has expanded its Robotaxi fleet in Austin

Continue Reading

News

Tesla explains why Robotaxis now have safety monitors in the driver’s seat

The update to Austin’s safety monitors became a point of interest among Tesla watchers on social media.

Published

on

Credit: Tesla

Tesla has provided an explanation about the presence of safety monitors in the driver’s seat of its autonomous Robotaxi units.

The autonomous ride-hailing service is currently being deployed in Austin and the Bay Area, with more cities across the United States expected to gain access to the service later this year.

Safety Monitors

When Tesla launched its initial Robotaxi program in Austin, the company made headlines for operating vehicles without a human in the driver’s seat. Even with this setup, however, Tesla still had safety monitors in the passenger seat of the Robotaxis. The safety monitors, which do not interact with passengers, have been observed to report issues and other behaviors from the autonomous vehicles in real time. 

Safety monitors on the driver’s seat were also employed in the service’s Bay Area rollout, though numerous members of the EV community speculated that this was likely done to meet regulations in California. However, with the expansion of the Austin geofence, riders in Tesla’s Robotaxis observed that the safety monitors in the city have been moved to the driver’s seat as well.

Tesla’s explanation

The update to Austin’s safety monitors became a point of interest among Tesla watchers on social media. Longtime FSD tester Whole Mars Catalog, for one, speculated that the move might be due to Texas’ new regulations for autonomous vehicles, which took effect recently. Interestingly enough, the official Tesla Robotaxi account on X responded to the FSD tester, providing an explanation behind the safety monitor’s move to the driver’s seat. 

Advertisement

“Safety monitors are only in the driver’s seat for trips that involve highway driving, as a self-imposed cautious first step toward expanding to highways,” the Tesla Robotaxi account noted.

Tesla has been extremely cautious with its autonomous driving program, particularly with the rollout of its Robotaxi service, which use Unsupervised FSD. This is quite understandable considering the negative media slant that Tesla is consistently subjected to, which could very well result in minute incidents or mistakes by Robotaxis being blown out of proportion.

Continue Reading

Elon Musk

The Boring Company begins hiring for Nashville’s Music City Loop

Tennessee Gov. Bill Lee expressed strong support for the project.

Published

on

Credit: The Boring Company/X

Elon Musk’s The Boring Company has started recruitment efforts for the Music City Loop, an underground tunnel system designed to link downtown Nashville with Nashville International Airport. 

Tennessee Gov. Bill Lee expressed strong support for the project, describing it as a cost-free alternative to traditional mass transit systems that could ease traffic congestion in the city. Initial digging began in mid-August, with visible progress reported by September 1, as noted in a WKRN report.

Job creation and project scope

The Boring Company is currently seeking engineers, electricians, mechanics, and operations coordinators as part of its hiring drive for the Music City Loop in Nashville. Gov. Lee emphasized that unlike large-scale transit projects that typically cost billions, the tunnel system will not burden taxpayers.

“We’ve been trying to find ways, Metro Nashville has in particular, to develop transit in the city for a long time. It costs billions and billions of dollars to build out transit systems. We now have an opportunity to have a transit system that costs the taxpayers nothing,” Lee said, calling the effort the fast lane to the city’s future.

The Music City Loop aims to provide a quick and efficient link between the city center and the airport, similar to The Boring Company’s other tunnel projects like the Las Vegas Convention Center Loop. Officials have praised the company for cooperating with state permitting and regulatory requirements, suggesting that the Nashville Loop project is advancing in line with established processes.

Advertisement

Community reactions and concerns

While officials are optimistic, community response has been mixed. Some residents have raised concerns about the speed of approval and a lack of public discussion before construction began.

Nashville resident Taylor John cited environmental impacts and worries that the tunnel could primarily serve tourists rather than local commuters. “I have a lot of concerns, first of all, by how fast this decision was made, I don’t think there was a lot of discussion from the members of the community before this decision was made. It’s going to impact us,” the resident stated.

Others, however, see the project as an innovative leap forward. “There’s a whole untapped potential underneath our feet,” resident Nathaniel Lehrer stated. “Anything that can save time when picking up family or friends or you need to catch a flight, it’d be an awesome option to have.”

Continue Reading

Trending