Connect with us

News

NASA aces most challenging Mars rover landing to date

Members of NASA’s Perseverance Mars rover team watch in mission control as the first images arrive moments after the spacecraft successfully touched down on Mars, Thursday, Feb. 18, 2021, at NASA's Jet Propulsion Laboratory. (Credit: NASA/Bill Ingalls)

Published

on

After a nearly 300 million mile (480 million kilometer), seven-month-long journey, the world watched as NASA’s Mars 2020 Perseverance mission successfully completed the most challenging and precise landing the agency has ever attempted on Thursday (Feb. 18). Perseverance is NASA’s fifth rover and overall ninth mission to successfully land on the Red Planet.

The first image of the Martian surface capture by NASA’s Perseverance rover moments after a successful touchdown on Mars. (Credit: NASA/JPL – Caltech)

On Thursday afternoon, the alien invader punched through the relatively thin Martian atmosphere streaking across the sky at a blazing 12,100 mph (19,500 kph). Then it shed a few layers, deployed the largest-ever supersonic parachute, and slowed down just enough to use a rocket-propelled crane to drop an autonomous, nuclear-powered, robotic astrobiologist called Perseverance on the surface of Mars.

Flawlessly completing the entry, descent, and landing sequence of its mission to land in Mars’ hostile Jezero Crater, NASA’s Mars 2020 Perseverance mission officially marked the completion of its interplanetary travel phase and began its mission to collect evidence of ancient, microbial Martian life.

Getting to Mars

On July 30, 2020, NASA’s Mars 2020 Perseverance mission launched aboard a United Launch Alliance Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Space Force Base. Aboard that rocket was NASA’s most ambitious Mars mission to date. The launch phase of the mission suffered a few minor delays ultimately shifting the launch date from July 18, 2020 to July 30, 2020. However, ULA’s Atlas V first stage rocket and Centaur upper stage delivered NASA’s Mars 2020 Perseverance mission into such an accurate trajectory that the 2,260 lb (1,025 kg) rover landed on its specified February 18 landing date despite the delays in the launch timeline.

In total, three missions to Mars – China’s Tianwen-1, the United Arab Emirates Hope Probe, and NASA’s Perseverance – left Earth in the summer of 2020. All three missions targeted to leave Earth prior to August to best take advantage of the minimal distance between the planets during what is called opposition. The opposition between Earth and Mars only occurs once every 22 months. If the Perseverance mission had missed its launch date it would’ve had to wait until 2022 for a chance to travel to the Red Planet.

An illustration of the route Mars 2020 takes to the Red Planet, including several trajectory correction maneuvers (TCMs) to adjust its flight path on the fly. (NASA/JPL-Caltech)

Entry, Descent, and Landing – a controlled disassembly

As Perseverance descended into the Martian atmosphere the Cruise Phase – hardware that propelled the spacecraft through space for seven months – was jettisoned. The Perseverance rover safely tucked inside the aeroshell and protected by a robust heat shield soared through the thin Martian atmosphere enduring an extreme amount of friction that produced heat energy that reached up to 2,370 degrees Fahrenheit (about 1,300 degrees Celsius).

This illustration depicts five major components of the Mars 2020 spacecraft. Top to bottom: cruise stage, backshell, descent stage, Perseverance rover and heat shield. The various components perform critical roles during the vehicle’s cruise to Mars and its dramatic Entry, Descent, and Landing. (Credit: NASA/JPL-Caltech)

Once through the period of peak heating the heat shield was jettisoned exposing Perseverance to the Martian environment for the first time. Then about 7 miles (11 kilometers) from the surface the largest supersonic parachute NASA has ever sent to another planet – 70.5 feet (21.5 meters) in diameter – was deployed drastically slowing the spacecraft.

While still descending, the controlled descent module – called the sky crane – separated from the backshell about 1.3 miles (2.1 kilometers) above the surface to free-fly in the Martian atmosphere. The descent module used a new landing technology called Terrain-Relative Navigation used a constant stream of visual input and guidance collected from the Vision Compute Element and Rover Compute Element to determine the safest reachable landing site.

In this illustration, NASA’s Perseverance rover gets its first look at the Martian surface below, after dropping its heat shield just under six minutes after entry into the Mars atmosphere. (Credit: NASA?JPL-Caltech)

The throttleable rockets on the powered descent module steered the rover to its landing spot in Mars’ Jezero Crater and slowed to approximately 1.7 mph (2.7 kph) about 66 feet (20 meters) above the Martian surface. Perseverance was then lowered using a system of Nylon cords which were autonomously severed upon touchdown. The final stage of the controlled disassembly was for the sky crane to throttle its rockets back up and fly away for a crash landing a safe distance from the rover.

Ultimately, the Perseverance rover landed about a kilometer south of the intended delta of the Jezero Crater.

Advertisement
-->
An image released by NASA of the landing location of the Perseverance rover about a kilometer away from the delta of Mars’ Jezero Crater. (Credit: NASA/JPL-Caltech)

Perseverance made it to Mars, now what?

The second image of the Martian surface capture by NASA’s Perseverance rover moments after a successful touchdown on Mars. (Credit: NASA/JPL- Caltech)

Getting to Mars was only the first of many milestones that Perseverance is expected to achieve during its projected one Mars year-long mission – about 687 Earth days. Now that the rover has touched down the science will begin.

First and foremost once Perseverance stretched its legs, so to speak, the first event took place just minutes after landing. Perseverance captured photos of the Martian surface with a pair of engineering cameras called Hazard Cameras mounted to the front and back of the rover.

The upgraded Navigation and Hazard cameras feature the capability to capture imagery of the Martian surface in 20 megapixel high-definition resolution for the first time. In the coming days, more images will be relayed back to Earth taken with the rover’s Navigation cameras and Mastcam-Z.

This image presents a selection of the 23 cameras on NASA’s 2020 Mars rover. (Credit: NASA/JPL-Caltech)

Once on Mars, the control of the Perseverance rover was transitioned from NASA JPL’s EDL team to the Perseverance Surface team. The Surface Phase of the Mars 2020 mission – or the phase of the mission that consists of the four main science objectives – began about twenty minutes after the touchdown.

Perseverance was sent to Mars to determine whether life ever existed on Mars, characterize the climate, characterize the geology, and prepare for the eventual human exploration of Mars. To achieve these massive science goals, the robotic astrobiologist was sent with an impressive suite of scientific research tools. Over the next 30 Martian days – called sols – the rover will begin to unfurl and begin testing the various pieces of hardware in preparation for exploring the delta of Jezero Crater.

This diagram illustrated the many science research components that are included aboard the Mars 2020 Perseverance rover. (Credi: NASA/ JPL – Caltech)

Deploying the stowaway

Perseverance not only took a roving science lab to Mars, but it also took the first rotorcraft helicopter to be deployed to another planet dubbed Ingenuity. Ingenuity is a small double-bladed rotorcraft weighing only about 4 pounds (1.8 kilograms).

After the initial 30 Ssls of stretching its legs, Perseverance will travel a short distance to find a flat area of the Martian surface to deploy the Ingenuity helicopter. Once deployed, the Ingenuity team will have a technology demonstration window of approximately 30 sols to complete the first flight test of Ingenuity – the first time powered, controlled flight will be attempted on another planet.

Landing is just the beginning

Graphic detailing the sample return process. Credit: ESA

As exciting as landing on Mars was, it is only the beginning for the Mars 2020 Perseverance rover. The nuclear-powered astrobiology robot will spend the next Martian year excavating the surface of a very rich delta in the Jezero crater searching for the first evidence of ancient, microbial life.

Even more exciting is that Perseverance is only the first phase of a larger mission called the Mars Sample Return mission that will someday bring the excavated samples that Perseverance collects back to Earth in a joint effort between NASA and the European Space Agency.

Advertisement
-->

Although the Perseverance mission is only intended to last one Martian year, Perseverance has the capacity to extend its mission to nearly 15 years thanks to its power source, a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) which produces a steady stream of electricity provided by the radioactive decay of plutonium-238. Perseverance could potentially outlast all of NASA’s other Mars missions.

Stay ahead of the curve and be the first to learn about new industry trends each week!

Follow along as our team gives you their take on the biggest stories of the week.

Space Reporter.

Advertisement
Comments

News

Tesla lands approval for Robotaxi operation in third U.S. state

On Tuesday, Tesla officially received regulatory approval from the State of Arizona, making it the third state for the company to receive approval in.

Published

on

Tesla has officially landed approval to operate its Robotaxi ride-hailing service in its third U.S. state, as it has landed a regulatory green light from the State of Arizona’s Department of Transportation.

Tesla has been working to expand to new U.S. states after launching in Texas and California earlier this year. Recently, it said it was hoping to land in Nevada, Arizona, and Florida, expanding to five new cities in those three states.

On Tuesday, Tesla officially received regulatory approval from the State of Arizona, making it the third state for the company to receive approval in:

Tesla has also been working on approvals in Nevada and Florida, and it has also had Robotaxi test mules spotted in Pennsylvania.

The interesting thing about the Arizona approval is the fact that Tesla has not received an approval for any specific city; it appears that it can operate statewide. However, early on, Tesla will likely confine its operation to just one or two cities to keep things safe and controlled.

Over the past few months, Robotaxi mules have been spotted in portions of Phoenix and surrounding cities, such as Scottsdale, as the company has been attempting to cross off all the regulatory Ts that it is confronted with as it attempts to expand the ride-hailing service.

It appears the company will be operating it similarly to how it does in Texas, which differs from its California program. In Austin, there is no Safety Monitor in the driver’s seat, unless the route requires freeway travel. In California, there is always a Safety Monitor in the driver’s seat. However, this is unconfirmed.

Earlier today, Tesla enabled its Robotaxi app to be utilized for ride-hailing for anyone using the iOS platform.

Continue Reading

News

Tesla ride-hailing Safety Monitor dozes off during Bay Area ride

We won’t try to blame the camera person for the incident, because it clearly is not their fault. But it seems somewhat interesting that they did not try to wake the driver up and potentially contact Tesla immediately to alert them of the situation.

Published

on

Credit: u/ohmichael on Reddit

A Tesla Robotaxi Safety Monitor appeared to doze off during a ride in the California Bay Area, almost ironically proving the need for autonomous vehicles.

The instance was captured on camera and posted to Reddit in the r/sanfrancisco subreddit by u/ohmichael. They wrote that they have used Tesla’s ride-hailing service in the Bay Area in the past and had pleasant experiences.

However, this one was slightly different. They wrote:

“I took a Tesla Robotaxi in SF just over a week ago. I have used the service a few times before and it has always been great. I actually felt safer than in a regular rideshare.

This time was different. The safety driver literally fell asleep at least three times during the ride. Each time the car’s pay attention safety alert went off and the beeping is what woke him back up.

I reported it through the app to the Robotaxi support team and told them I had videos, but I never got a response.

I held off on posting anything because I wanted to give Tesla a chance to respond privately. It has been more than a week now and this feels like a serious issue for other riders too.

Has anyone else seen this happen?”

Advertisement

-->

My Tesla Robotaxi “safety” driver fell asleep
byu/ohmichael insanfrancisco

The driver eventually woke up after prompts from the vehicle, but it is pretty alarming to see someone like this while they’re ultimately responsible for what happens with the ride.

We won’t try to blame the camera person for the incident, because it clearly is not their fault. But it seems somewhat interesting that they did not try to wake the driver up and potentially contact Tesla immediately to alert them of the situation.

They should have probably left the vehicle immediately.

Tesla’s ride-hailing service in the Bay Area differs from the one that is currently active in Austin, Texas, due to local regulations. In Austin, there is no Safety Monitor in the driver’s seat unless the route requires the highway.

Tesla plans to remove the Safety Monitors in Austin by the end of the year.

Continue Reading

News

Tesla opens Robotaxi access to everyone — but there’s one catch

Published

on

Credit: Tesla

Tesla has officially opened Robotaxi access to everyone and everyone, but there is one catch: you have to have an iPhone.

Tesla’s Robotaxi service in Austin and its ride-hailing service in the Bay Area were both officially launched to the public today, giving anyone using the iOS platform the ability to simply download the app and utilize it for a ride in either of those locations.

It has been in operation for several months: it launched in Austin in late June and in the Bay Area about a month later. In Austin, there is nobody in the driver’s seat unless the route takes you on the freeway.

In the Bay Area, there is someone in the driver’s seat at all times.

The platform was initially launched to those who were specifically invited to Austin to try it out.

Tesla confirms Robotaxi is heading to five new cities in the U.S.

Slowly, Tesla launched the platform to more people, hoping to expand the number of rides and get more valuable data on its performance in both regions to help local regulatory agencies relax some of the constraints that were placed on it.

Additionally, Tesla had its own in-house restrictions, like the presence of Safety Monitors in the vehicles. However, CEO Elon Musk has maintained that these monitors were present for safety reasons specifically, but revealed the plan was to remove them by the end of the year.

Now, Tesla is opening up Robotaxi to anyone who wants to try it, as many people reported today that they were able to access the app and immediately fetch a ride if they were in the area.

We also confirmed it ourselves, as it was shown that we could grab a ride in the Bay Area if we wanted to:

The launch of a more public Robotaxi network that allows anyone to access it seems to be a serious move of confidence by Tesla, as it is no longer confining the service to influencers who are handpicked by the company.

In the coming weeks, we expect Tesla to then rid these vehicles of the Safety Monitors as Musk predicted. If it can come through on that by the end of the year, the six-month period where Tesla went from launching Robotaxi to enabling driverless rides is incredibly impressive.

Continue Reading