Connect with us

News

SpaceX Falcon Heavy goes vertical with Musk’s Tesla as launch nears

Falcon Heavy is vertical at Pad 39A for the first time ever (Richard Angle)

Published

on

After approximately half a decade of concerted and less-than-patient waiting, long-time followers of SpaceX have, for the first time ever, seen SpaceX’s first completed Falcon Heavy rocket roll out to the launch pad and go vertical at the same complex that hosted every single Apollo moon landing, LC-39A.

This is a historic moment in SpaceX’s history, even if it culminates in nothing more than a quiet rollout and roll-back to the historic pad’s integration facilities. For at least several years, it has been a running (lighthearted) joke within the fan community that Falcon Heavy is permanently six months away from launch. Outside of the rocket company’s supporters, however, that fan humor gained a heavier tinge, and Falcon Heavy essentially became the strawman with which SpaceX detractors could ream the company’s greater (and even relatively minor) ambitions as over-promised, unrealistic dreams to one day also become permanently delayed. While seasoned spaceflight journalists rarely partook in the Falcon Heavy bashing, pop journalism and the titans of the global launch industry certainly took advantage of the apparent weakness as the preeminent example of SpaceX’s tendency towards delays. Even SpaceX’s conservative supporters understandably saw the significance when two customers ultimately chose to move their payloads elsewhere due to Falcon Heavy’s relentless delays.

However, the reality was rather clear to those that followed the agile launch company and paid attention to the statements of its executive management, including CEO Elon Musk. Ultimately, Falcon Heavy was not a priority and was only ever going to capitalize upon a minority of the satellite launch industry, given the rarity of satellites heavy enough to need the massive vehicle. While Falcon Heavy would undoubtedly be invaluable for SpaceX’s grander ambitions of interplanetary exploration and transport, those ambitions simply did not compare in importance to solving Falcon 9 design and supply chain issues that caused the failures of CRS-7 and Amos-6. Nor were they more crucial than the launch company’s need for a stable cadre of trusting customers, simply upgrading the already-operational Falcon 9, or the perfection of first stage reusability – all of which would explicitly impact the utility of Falcon Heavy.

Advertisement
-->

A panorama of LC-39A from late-November. Falcon Heavy will likely launch from this pad in January 2018. (Tom Cross/Teslarati)

SpaceX’s official July 2017 confirmation that Red Dragon had been cancelled further guaranteed that Falcon Heavy would only ever be a niche product, maybe even little more than a symbolic stopgap to fill a tiny industry niche and soothe delay-stricken nerves. SpaceX does have at least a handful of Falcon Heavy customers still hopefully awaiting its operational status, but it is quite clear that the company sees its value most as a method of both reassuring the world that its infamous delays are only temporary, as well as relatively economically fueling the development of a reusable super-heavy launch vehicle, expertise that would inevitably benefit the Mars-focused BFR as it too begins development. At a minimum, it will provide SpaceX’s launch, design, and manufacturing experts a sort of base of knowledge about building and operating rockets with ~30 or more first stage engines – the 2017 iteration of BFR is likely to sport 31. It’s also possible that Falcon Heavy could provide the margins necessary to allow SpaceX to attempt recoveries of Falcon’s second stage, a purely experimental effort that would feed directly into the development of the fully-reusable BFR upper stage the company hopes to build, BFS.

Thus, while Falcon Heavy’s inaugural launch may not be explicitly important to SpaceX’s near-term business strategy, it will in almost every way mark one of its first tailor-made steps towards Mars, perhaps both literally and figuratively. Rather humorously, SpaceX (or Elon Musk … probably just Elon Musk) has chosen to replace the boilerplate mass simulator often flown as a payload for inaugural launches of most launch vehicles (Falcon 9 included) with a rather unique mass simulator: Musk’s own first-generation Tesla Roadster. While it has yet to be specified what the specific destination of the second stage and Roadster are, nor what – if any – functional payload is to be included, Musk did suggest that the destination would be a “billion-year Mars orbit.” The nitpick here is hugely significant, as ‘simply’ launching the Roadster into a solar orbit at a similar distance to Mars (still an impressive accomplishment) would be decidedly less impressive than actually injecting the Roadster into orbit around Mars. Pictures released by SpaceX show no additional boost stages attached to the Roadster, so a Martian orbit would require Falcon Heavy’s second stage to coast in deep space for several months while generating enough power to prevent its propellant from freezing and maintain contact with ground control, especially in the rather likely event that SpaceX (and Musk) hope to acquire some rather absurd and iconic images from the inaugural launch and its space travels.

 

History and symbolism aside, it can now be said with utter certainty that Falcon Heavy is very real and is likely to launch very soon. The vehicle’s first-ever integrated rollout to Pad 39A is almost certainly intended only for “fit-checks,” a verification that the pad and brand new vehicle are meshing well together, but it is still the first time in the company’s history that FH visibly exists, and there can be little doubt that the photo opportunity was not taken advantage of. After fit checks are performed, likely over the course of a day or two, Falcon Heavy will be most likely be brought horizontal and rolled back into 39A’s integration facilities, where it will be prepared for its first full-up wet dress rehearsal (WDR) and static fire, possibly including the cautionary removal of the second stage and Roadster payload. Because the vehicle is inherently new, as are many of the upgraded ground systems needed to support it, bugs are highly probable along the road to launch. However, if the first WDR and static fire go precisely as planned, the first launch attempt can be expected to occur about a week later – maybe sooner, maybe later.

All things considered, SpaceX is clearly moving full speed ahead with Falcon Heavy’s launch preparations, and it seems highly probable that the company’s schedule will allow for January launch, even if minor issues mean that multiple WDRs or static fires are required. Elon Musk certainly hedged his bets earlier this summer by aggressively inflating the probability that Falcon Heavy fails on its launch pad, famously stating that a success in his eyes would be the vehicle clearing the pad without destroying LC-39A. In reality, SpaceX would not in a million years haphazardly risk the destruction of Pad 39A, and the company is almost certainly quite confident that the pad is at most marginally at risk of severe damage. One thing that Musk cannot be criticized for is the argument that one way or another, Falcon Heavy’s inaugural launch will be a sight to behold. While the payload may indeed be heading to or towards Mars, SpaceX still plans to attempt recovery of all three of Falcon Heavy’s first stages: both side cores are expected to land almost simultaneously at LZ-1’s two landing pads, while the center booster will follow a parabola out into the Atlantic for a landing aboard the droneship Of Course I Still Love You, truly a spectacle to behold regardless of success or failure.

Follow along live on Twitter and Instagram as our launch photographer Tom Cross documents Falcon Heavy’s last steps along its journey to first flight, as well as Falcon 9’s imminent launch of the mysterious Zuma payload, currently NET January 4.

Cover photo courtesy of spaceflight fan and photographer Richard Angle. Follow him on Instagram at @rdanglephoto!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Man credits Grok AI with saving his life after ER missed near-ruptured appendix

The AI flagged some of the man’s symptoms and urged him to return to the ER immediately and demand a CT scan.

Published

on

Credit: Grok Imagine

A 49-year-old man has stated that xAI’s Grok ended up saving his life when the large language model identified a near-ruptured appendix that his first ER visit dismissed as acid reflux. 

After being sent home from the ER, the man asked Grok to analyze his symptoms. The AI flagged some of the man’s symptoms and urged him to return immediately and demand a CT scan. The scan confirmed that something far worse than acid reflux was indeed going on.

Grok spotted what a doctor missed

In a post on Reddit, u/Tykjen noted that for 24 hours straight, he had a constant “razor-blade-level” abdominal pain that forced him into a fetal position. He had no fever or visible signs. He went to the ER, where a doctor pressed his soft belly, prescribed acid blockers, and sent him home. 

The acid blockers didn’t work, and the man’s pain remained intense. He then decided to open a year-long chat he had with Grok and listed every detail that he was experiencing. The AI responded quickly. “Grok immediately flagged perforated ulcer or atypical appendicitis, told me the exact red-flag pattern I was describing, and basically said “go back right now and ask for a CT,” the man wrote in his post. 

He copied Grok’s reasoning, returned to the ER, and insisted on the scan. The CT scan ultimately showed an inflamed appendix on the verge of rupture. Six hours later, the appendix was out. The man said the pain has completely vanished, and he woke up laughing under anesthesia. He was discharged the next day.

Advertisement
-->
How a late-night conversation with Grok got me to demand the CT scan that saved my life from a ruptured appendix (December 2025)
byu/Tykjen ingrok

AI doctors could very well be welcomed

In the replies to his Reddit post, u/Tykjen further explained that he specifically avoided telling doctors that Grok, an AI, suggested he get a CT scan. “I did not tell them on the second visit that Grok recommended the CT scan. I had to lie. I told them my sister who’s a nurse told me to ask for the scan,” the man wrote. 

One commenter noted that the use of AI in medicine will likely be welcomed, stating that “If AI could take doctors’ jobs one day, I will be happy. Doctors just don’t care anymore. It’s all a paycheck.” The Redditor replied with, “Sadly yes. That is what it felt like after the first visit. And the following night could have been my last.”

Elon Musk has been very optimistic about the potential of robots like Tesla Optimus in the medical field. Provided that they are able to achieve human-level articulation in their hands, and Tesla is able to bring down their cost through mass manufacturing, the era of AI-powered medical care could very well be closer than expected. 

Continue Reading

News

Tesla expands Model 3 lineup in Europe with most affordable variant yet

The Model 3 Standard still delivers more than 300 miles of range, potentially making it an attractive option for budget-conscious buyers.

Published

on

Credit: Tesla

Tesla has introduced a lower-priced Model 3 variant in Europe, expanding the lineup just two months after the vehicle’s U.S. debut. The Model 3 Standard still delivers more than 300 miles (480 km) of range, potentially making it an attractive option for budget-conscious buyers.

Tesla’s pricing strategy

The Model 3 Standard arrives as Tesla contends with declining registrations in several countries across Europe, where sales have not fully offset shifting consumer preferences. Many buyers have turned to options such as Volkswagen’s ID.3 and BYD’s Atto 3, both of which have benefited from aggressive pricing.

By removing select premium finishes and features, Tesla positioned the new Model 3 Standard as an “ultra-low cost of ownership” option of its all-electric sedan. Pricing comes in at €37,970 in Germany, NOK 330,056 in Norway, and SEK 449,990 in Sweden, depending on market. This places the Model 3 Standard well below the “premium” Model 3 trim, which starts at €45,970 in Germany. 

Deliveries for the Standard model are expected to begin in the first quarter of 2026, giving Tesla an entry-level foothold in a segment that’s increasingly defined by sub-€40,000 offerings.

Tesla’s affordable vehicle push

The low-cost Model 3 follows October’s launch of a similarly positioned Model Y variant, signaling a broader shift in Tesla’s product strategy. While CEO Elon Musk has moved the company toward AI-driven initiatives such as robotaxis and humanoid robots, lower-priced vehicles remain necessary to support the company’s revenue in the near term.

Advertisement
-->

Reports have indicated that Tesla previously abandoned plans for an all-new $25,000 EV, with the company opting to create cheaper versions of existing platforms instead. Analysts have flagged possible cannibalization of higher-margin models, but the move aims to counter an influx of aggressively priced entrants from China and Europe, many of which sell below $30,000. With the new Model 3 Standard, Tesla is reinforcing its volume strategy in Europe’s increasingly competitive EV landscape.

Continue Reading

News

Tesla FSD (Supervised) stuns Germany’s biggest car magazine

FSD Supervised recognized construction zones, braked early for pedestrians, and yielded politely on narrow streets.

Published

on

Credit: Grok Imagine

Tesla’s upcoming FSD Supervised system, set for a European debut pending regulatory approval, is showing notably refined behavior in real-world testing, including construction zones, pedestrian detection, and lane changes, as per a recent demonstration ride in Berlin. 

While the system still required driver oversight, its smooth braking, steering, and decision-making illustrated how far Tesla’s driver-assistance technology has advanced ahead of a potential 2026 rollout.

FSD’s maturity in dense city driving

During the Berlin test ride with Auto Bild, Germany’s largest automotive publication, a Tesla Model 3 running FSD handled complex traffic with minimal intervention, autonomously managing braking, acceleration, steering, and overtaking up to 140 km/h. It recognized construction zones, braked early for pedestrians, and yielded politely on narrow streets. 

Only one manual override was required when the system misread a converted one-way route, an example, Tesla stated, of the continuous learning baked into its vision-based architecture.

Robin Hornig of Auto Bild summed up his experience with FSD Supervised with a glowing review of the system. As per the reporter, FSD Supervised already exceeds humans with its all-around vision. “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention,” the journalist wrote. 

Advertisement
-->
https://twitter.com/Paddy_film/status/1996245521770364947?s=20

Tesla FSD in Europe

FSD Supervised is still a driver-assistance system rather than autonomous driving. Still, Auto Bild noted that Tesla’s 360-degree camera suite, constant monitoring, and high computing power mark a sizable leap from earlier iterations. Already active in the U.S., China, and several other regions, the system is currently navigating Europe’s approval pipeline. Tesla has applied for an exemption in the Netherlands, aiming to launch the feature through a free software update as early as February 2026.

What Tesla demonstrated in Berlin mirrors capabilities already common in China and the U.S., where rival automakers have rolled out hands-free or city-navigation systems. Europe, however, remains behind due to a stricter certification environment, though Tesla is currently hard at work pushing for FSD Supervised’s approval in several countries in the region.

Continue Reading