News
SpaceX Falcon Heavy goes vertical with Musk’s Tesla as launch nears
After approximately half a decade of concerted and less-than-patient waiting, long-time followers of SpaceX have, for the first time ever, seen SpaceX’s first completed Falcon Heavy rocket roll out to the launch pad and go vertical at the same complex that hosted every single Apollo moon landing, LC-39A.
This is a historic moment in SpaceX’s history, even if it culminates in nothing more than a quiet rollout and roll-back to the historic pad’s integration facilities. For at least several years, it has been a running (lighthearted) joke within the fan community that Falcon Heavy is permanently six months away from launch. Outside of the rocket company’s supporters, however, that fan humor gained a heavier tinge, and Falcon Heavy essentially became the strawman with which SpaceX detractors could ream the company’s greater (and even relatively minor) ambitions as over-promised, unrealistic dreams to one day also become permanently delayed. While seasoned spaceflight journalists rarely partook in the Falcon Heavy bashing, pop journalism and the titans of the global launch industry certainly took advantage of the apparent weakness as the preeminent example of SpaceX’s tendency towards delays. Even SpaceX’s conservative supporters understandably saw the significance when two customers ultimately chose to move their payloads elsewhere due to Falcon Heavy’s relentless delays.
Falcon Heavy went vertical at LC-39A for the first time today! Here’s a few shots (taken through much haze) from Playalinda Beach. pic.twitter.com/gsOL9tAfTN
— John Kraus (@johnkrausphotos) December 28, 2017
However, the reality was rather clear to those that followed the agile launch company and paid attention to the statements of its executive management, including CEO Elon Musk. Ultimately, Falcon Heavy was not a priority and was only ever going to capitalize upon a minority of the satellite launch industry, given the rarity of satellites heavy enough to need the massive vehicle. While Falcon Heavy would undoubtedly be invaluable for SpaceX’s grander ambitions of interplanetary exploration and transport, those ambitions simply did not compare in importance to solving Falcon 9 design and supply chain issues that caused the failures of CRS-7 and Amos-6. Nor were they more crucial than the launch company’s need for a stable cadre of trusting customers, simply upgrading the already-operational Falcon 9, or the perfection of first stage reusability – all of which would explicitly impact the utility of Falcon Heavy.

A panorama of LC-39A from late-November. Falcon Heavy will likely launch from this pad in January 2018. (Tom Cross/Teslarati)
SpaceX’s official July 2017 confirmation that Red Dragon had been cancelled further guaranteed that Falcon Heavy would only ever be a niche product, maybe even little more than a symbolic stopgap to fill a tiny industry niche and soothe delay-stricken nerves. SpaceX does have at least a handful of Falcon Heavy customers still hopefully awaiting its operational status, but it is quite clear that the company sees its value most as a method of both reassuring the world that its infamous delays are only temporary, as well as relatively economically fueling the development of a reusable super-heavy launch vehicle, expertise that would inevitably benefit the Mars-focused BFR as it too begins development. At a minimum, it will provide SpaceX’s launch, design, and manufacturing experts a sort of base of knowledge about building and operating rockets with ~30 or more first stage engines – the 2017 iteration of BFR is likely to sport 31. It’s also possible that Falcon Heavy could provide the margins necessary to allow SpaceX to attempt recoveries of Falcon’s second stage, a purely experimental effort that would feed directly into the development of the fully-reusable BFR upper stage the company hopes to build, BFS.
Thus, while Falcon Heavy’s inaugural launch may not be explicitly important to SpaceX’s near-term business strategy, it will in almost every way mark one of its first tailor-made steps towards Mars, perhaps both literally and figuratively. Rather humorously, SpaceX (or Elon Musk … probably just Elon Musk) has chosen to replace the boilerplate mass simulator often flown as a payload for inaugural launches of most launch vehicles (Falcon 9 included) with a rather unique mass simulator: Musk’s own first-generation Tesla Roadster. While it has yet to be specified what the specific destination of the second stage and Roadster are, nor what – if any – functional payload is to be included, Musk did suggest that the destination would be a “billion-year Mars orbit.” The nitpick here is hugely significant, as ‘simply’ launching the Roadster into a solar orbit at a similar distance to Mars (still an impressive accomplishment) would be decidedly less impressive than actually injecting the Roadster into orbit around Mars. Pictures released by SpaceX show no additional boost stages attached to the Roadster, so a Martian orbit would require Falcon Heavy’s second stage to coast in deep space for several months while generating enough power to prevent its propellant from freezing and maintain contact with ground control, especially in the rather likely event that SpaceX (and Musk) hope to acquire some rather absurd and iconic images from the inaugural launch and its space travels.
- The first-ever Falcon Heavy (sans payload and fairing) shown inside Pad 39A’s horizontal integration facility (HIF). (SpaceX)
- Elon Musk’s Roadster seen before being encapsulated in Falcon Heavy’s massive payload fairing. Below the Tesla is the payload adapter, which connects it to the rocket. (SpaceX)
- Finally, the fairing is transported vertically to the HIF, where it can be flipped horizontal and attached to its rocket. (Reddit /u/St-Jed-of-Calumet)
History and symbolism aside, it can now be said with utter certainty that Falcon Heavy is very real and is likely to launch very soon. The vehicle’s first-ever integrated rollout to Pad 39A is almost certainly intended only for “fit-checks,” a verification that the pad and brand new vehicle are meshing well together, but it is still the first time in the company’s history that FH visibly exists, and there can be little doubt that the photo opportunity was not taken advantage of. After fit checks are performed, likely over the course of a day or two, Falcon Heavy will be most likely be brought horizontal and rolled back into 39A’s integration facilities, where it will be prepared for its first full-up wet dress rehearsal (WDR) and static fire, possibly including the cautionary removal of the second stage and Roadster payload. Because the vehicle is inherently new, as are many of the upgraded ground systems needed to support it, bugs are highly probable along the road to launch. However, if the first WDR and static fire go precisely as planned, the first launch attempt can be expected to occur about a week later – maybe sooner, maybe later.
All things considered, SpaceX is clearly moving full speed ahead with Falcon Heavy’s launch preparations, and it seems highly probable that the company’s schedule will allow for January launch, even if minor issues mean that multiple WDRs or static fires are required. Elon Musk certainly hedged his bets earlier this summer by aggressively inflating the probability that Falcon Heavy fails on its launch pad, famously stating that a success in his eyes would be the vehicle clearing the pad without destroying LC-39A. In reality, SpaceX would not in a million years haphazardly risk the destruction of Pad 39A, and the company is almost certainly quite confident that the pad is at most marginally at risk of severe damage. One thing that Musk cannot be criticized for is the argument that one way or another, Falcon Heavy’s inaugural launch will be a sight to behold. While the payload may indeed be heading to or towards Mars, SpaceX still plans to attempt recovery of all three of Falcon Heavy’s first stages: both side cores are expected to land almost simultaneously at LZ-1’s two landing pads, while the center booster will follow a parabola out into the Atlantic for a landing aboard the droneship Of Course I Still Love You, truly a spectacle to behold regardless of success or failure.
My capture of @SpaceX #FalconHeavy making her #39A debut today. Taken with my Nikon D3300 with 300mm lens from the Canaveral National Seashore Vista 8. I must admit I have enjoyed watching the reactions to seeing it on the pad. My reaction… WHOA @NASASpaceflight @lorengrush pic.twitter.com/fEntFCwCO8
— Julia Bergeron (@julia_bergeron) December 28, 2017
Follow along live on Twitter and Instagram as our launch photographer Tom Cross documents Falcon Heavy’s last steps along its journey to first flight, as well as Falcon 9’s imminent launch of the mysterious Zuma payload, currently NET January 4.
Cover photo courtesy of spaceflight fan and photographer Richard Angle. Follow him on Instagram at @rdanglephoto!
News
Tesla Fremont Factory celebrates 15 years of electric vehicle production
Since opening in 2010, the Fremont Factory has produced all four “S3XY” models while creating tens of thousands of jobs.
Tesla is marking the 15-year anniversary of its Fremont Factory in California, the first automotive mass-manufacturing plant acquired by the electric car maker.
Since opening in 2010, the Fremont Factory has produced all four “S3XY” models while creating tens of thousands of jobs and investing billions of dollars in the region.
Celebrating 15 years of EV production
The Fremont Factory’s milestone was celebrated by the official Tesla Manufacturing account on X, which posted a photo of several Teslas forming a “15” in front of the facility’s iconic white facade. As per the electric vehicle maker, the Fremont Factory has now produced 3.6 million vehicles so far, and it has also created over 20,000 jobs in the state.
“15 years ago, we opened Fremont factory. Today, the Fremont team is producing all 4 S3XY models, totaling 3.6M vehicles made so far. 20k+ California jobs created w/ billions of dollars invested,” the official Tesla Manufacturing account on X wrote in its post.
The Fremont Factory’s transformation
Tesla acquired the Fremont Factory from the defunct NUMMI joint venture between General Motors and Toyota in May 2010 for $42 million. The facility had produced more than 8 million vehicles under GM and Toyota over 26 years. Following its acquisition, Tesla retooled the 5.3-million-square-foot plant to support the production of the Model S sedan.
Over the past 15 years, the factory has evolved into Tesla’s primary North American production hub, assembling the Model S, 3, X, and Y. Annual output has exceeded 550,000 vehicles, including nearly 560,000 produced in 2023 alone. Expectations are high that other products, such as the next-generation Roadster and Optimus, might be produced in the Fremont Factory as well.
News
Tesla posts job opening for next-generation Roadster production
Elon Musk teased a major demonstration at the Tesla Design Studio in Hawthorne, scheduled for the end of the year.
Tesla has opened its first job listing specifically for the next-generation Roadster, hinting at some substantial progress on the company’s long-awaited flagship all-electric supercar.
The company is looking for a Manufacturing Engineer to support the development and launch of new battery manufacturing equipment, which would likely be pivotal to the Roaster, considering its teased performance and range.
Tesla’s next-generation Roadster batteries
As per Tesla’s Careers website, the Roadster Manufacturing Engineer’s tasks would include ideating equipment concepts, developing specifications, validating processes, and addressing production bottlenecks. Tesla emphasized that the position involves collaboration across domestic and international sites, supporting equipment factory acceptance tests and assisting operations teams, with expected travel under 50 percent.
“In this role, you will take large-scale manufacturing systems for new battery products and architectures from the early concept development stage through equipment launch, optimization, and handover to local operations teams. Battery development is at the heart of our company, and this is an exciting opportunity to work directly on the central challenges for the all-new Roadster product architecture while still in its early development stages,” the job listing noted.
The opening marks one of the first public hiring efforts explicitly tied to the next-gen Roadster, suggesting that the vehicle’s development might be approaching its initial manufacturing phase. The fact that the new Roadster’s first job opening is related to its battery is interesting, as the vehicle was unveiled with a range of 620 miles way back in late 2018. Though at the time, Elon Musk also noted that the Roadster would be fitted with a 200 kWh battery, twice the size of the batteries used in the Model S and Model X.
Musk teases “most epic demo ever” and fuels Roadster speculation
Back in July, Elon Musk teased a major demonstration at the Tesla Design Studio in Hawthorne, California, scheduled for the end of the year. Musk shared on X that he had just visited the studio, calling the upcoming event the “most epic demo ever by one of year. Ever.”
The statement immediately prompted speculations that Tesla may finally be ready to reveal the production version of the next-generation Roadster. Originally unveiled alongside the Semi in 2018, the Roadster has remained under wraps while the company scaled production of other models. Since its unveiling, however, the Roadster’s rollout has been pushed back in favor of the original Model Y, the refreshed Model S and X, the Cybertruck, the refreshed Model 3, the Semi, and the new Model Y.
At the time of its unveiling, the next-generation Roadster was teased to be nothing short of a monster, with a 0-60 mph time of 1.99 seconds and a top speed of over 250 mph. Elon Musk also teased that the next-generation Roadster would have a range of 620 miles per charge. Later, the CEO noted that the Roadster should be able to achieve a 0-60 mph launch of less than 1 second, thanks to the vehicle’s SpaceX package. Musk has also noted recently that the next-generation Roadster would be “beyond a car.”
News
Tesla’s Shanghai sites now producing massive solar output, confirms exec
Gigafactory Shanghai’s rooftop solar installation now generates an impressive amount of clean energy, and other sites are following suit.
Tesla China Vice President Grace Tao recently shared new details on the company’s solar initiatives in some of its facilities across Shanghai.
In a post on Weibo, the Tesla executive stated that Gigafactory Shanghai’s rooftop solar installation now generates an impressive amount of clean energy, and other sites are following suit.
Tesla China’s rooftop solar initiatives
As per Tao’s post, Giga Shanghai’s rooftop solar system produces about 11 million kWh of electricity per year. This helps reduce carbon emissions by an estimated 4,600 tons annually.
The Shanghai Megafactory, which produces Megapack batteries, is also being fitted with solar panels. Once operational, it is expected to generate an additional 6 million kWh per year and further lower carbon emissions by roughly 2,500 tons.
“At present, the roof of the Shanghai Super Factory is covered with photovoltaic panels, which can generate 11 million kWh of electricity annually and reduce carbon emissions by 4,600 tons. The Shanghai Energy Storage Super Factory next door is also installing photovoltaic panels, which is expected to generate an additional 6 million kWh a year and reduce carbon emissions by 2,500 tons,” Tao wrote in her post.
Tesla expands solar and storage efforts
Beyond its manufacturing hubs, Tesla is extending its renewable energy strategy to service centers and retail operations in China. Tao stated that the roof of Tesla’s Shanghai Kangqiao Direct Body and Paint Center already produces around 400,000 kWh of green electricity each year, reducing emissions by yet another 170 tons.
She highlighted that Tesla’s goal is to ensure clean electricity powers the full lifecycle of its products, from manufacturing and storage to on-road charging. “The manufacture, storage, and use of clean electricity runs through the entire chain of Tesla products, and is also the contribution of every Tesla owner to a sustainable tomorrow for the earth,” Tao stated.
-
Elon Musk2 weeks agoSpaceX posts Starship booster feat that’s so nutty, it doesn’t even look real
-
Elon Musk1 week agoTesla Full Self-Driving gets an offer to be insured for ‘almost free’
-
News1 week agoElon Musk confirms Tesla FSD V14.2 will see widespread rollout
-
News2 weeks agoTesla is adding an interesting feature to its centerscreen in a coming update
-
News2 weeks agoTesla launches new interior option for Model Y
-
News2 weeks agoTesla widens rollout of new Full Self-Driving suite to more owners
-
Elon Musk2 weeks agoTesla CEO Elon Musk’s $1 trillion pay package hits first adversity from proxy firm
-
News1 week agoTesla might be doing away with a long-included feature with its vehicles




