News
SpaceX to launch one of its last old-gen Falcon 9s in upcoming launch
One of SpaceX’s rapidly shrinking fleet of older Falcon 9 launch vehicles has rolled out to the company’s California launch pad ahead of an expendable launch and fairing recovery attempt scheduled for no earlier than Tuesday (NET) 12:47 pm PST/19:47 UTC May 22.
Although SpaceX may have inaugurated a new era of truly reusable rocketry with the debut of Falcon 9 Block 5 earlier this month, there are still a number of older Falcon 9 boosters (all flight-proven) awaiting their second and final flights. At the moment, a minimum of four cores remain, including the sooty Falcon 9 first stage captured earlier this evening by Teslarati photographer Pauline Acalin.
Foreshadowing its imminent watery demise with a lack of landing legs, this particular booster (B1043) previously launched the mysterious and controversial Zuma mission in January 2018, a classified payload claimed (sans convincing evidence) to have failed and reentered Earth’s atmosphere mere hours after reaching orbit. While it’s possible that the mission was a failure, at the moment unsteadily blamed on the failure of a Northrop Grumman-designed payload adapter and deployment mechanism, it’s far more probable that the apparently wildly-expensive satellite is still in orbit.
- Falcon 9 B1043 lifts off for the first time with Zuma on January 7. (Tom Cross/Teslarati)
- After landing at LZ-1, B1043 was refurbished in approximately four months. (SpaceX)
- On May 21, the rocket was rolled out to SLC-4E on the opposite coast of its first launch, ready for one final flight. (Pauline Acalin)
Checking the pulse of Earth’s gravity
Regardless, the same SpaceX rocket booster responsible for lifting Zuma and the Falcon 9 upper stage out of the atmosphere is now ready to launch a new payload at SLC-4E, a launch pad stationed in Vandenberg Air Force Base. B1043’s second orbit-destined payload is a compliment of seven satellites: five are of the Iridium NEXT variety and the remaining satellites make up a scientific mission and technology demonstrator known as GRACE-FO (FO for Follow-On).
- The two GRACE-FO satellites are stacked atop five Iridium NEXT communications satellites. (NASA)
- (NASA)
- (NASA)
- SpaceX is already fairly experienced with launching multi-satellite missions and building custom payload adapters. (NASA)
- A combination of scientific satellites and five Iridium NEXT communications satellites preparing for launch in May 2018. (NASA)
- During a normal Iridium NEXT launch, two groups of five satellites are stacked on top of each other. Here, the top stack was replaced by NASA/DLR’s GRACE-FO spacecraft. (NASA)
Following in the footsteps of the original GRACE’s (Gravity Recovery and Climate Experiment) 15 year orbital tenure, GRACE-FO is effectively the same mission with significantly upgraded hardware – the biggest experimental component is actually an advanced laser interferometer designed to measure the distance between the two satellites (roughly equivalent to the distance between LA and San Diego) with the precision of a single micrometer (10-100x smaller than the width of a human hair). At that level of precision, the pair of satellites can detect minute changes in Earth’s gravity, to the extent that they can actually observe droughts, floods, and ice melt through the change in gravity caused by the movement of large (i.e. heavy) quantities of water. If the experimental laser ranging technology works as intended, it will be at least ten times more accurate than the microwave-ranging technology also installed on the follow-on satellites.
SpaceX’s rocket fleet makes way for Block 5
On the SpaceX side of things, Falcon 9 B1043 will be expended after dutifully completing the launch of Iridium-6/GRACE-FO, although the presence of grid fins on the rocket indicates that SpaceX will likely continue a regime of soft-landing recovery tests to optimize and flesh out the limits of Falcon 9’s capabilities. At first glance, the tradeoff of expending entire rocket boosters able to be (relatively inefficiently) refurbished for considerably more than two flights seems extreme and inadvisable. However, SpaceX is presumably ravenous for data on the survivable envelope of Falcon 9 performance – particularly reuse – in advance of the complete transition to the rocket’s Block 5 iteration, a significant upgrade likely to come hand in hand with a more pronounced aversion to expendable missions given each booster’s design lifespan of 10 to 100 missions. At that level of reusability, expending Falcon 9 Block 5s would truly become comparable with the absurdity of trashing an airliner after one or a handful of flights, an (in)famous talking point used by Elon Musk over his years of public SpaceX discussions.
Thus, if SpaceX can gather data that might enable future Falcon 9 Block 5 recoveries by expending much less valuable Block 3 and 4 boosters, the payoff would be irresistible once examined with a long-term outlook. In the sense that Block 5 may be capable of magnitudes more flights with considerably cheaper refurbishment, the literal elemental value of the hardware – in the likely event that Block 5 production is more capital-intensive than Block 3/4 – is more or less irrelevant for an aversion to expending Block 5 boosters.
Rather, what is lost alongside an expendable Block 5 mission is instead the comparatively vast amount of revenue locked within dozens of additional highly-profitable launches each expended booster could have supported. From that perspective, expending Block 3s and 4s to gather data might be accurately compared to destroying single-pilot Cessnas to improve the utility of a 747 airliner.
After B1043 is expended, only three obvious flightworthy cores will remain outside of the gradually growing Falcon 9 Block 5 fleet (just two boosters, currently). In order of anticipated launch, these three missions are SES-12 (NET May 31), CRS-15 (NET June 28), and the Crew Dragon in-flight abort test (NET Q4 2018). Barring the unexpected refurbishment of an older flight-proven core for a third mission, these final three missions will bring to a close the inherently temporary era of partially-reusable SpaceX rockets – in the words of Elon Musk, Block 5 would thus signify that SpaceX has moved from “the dog that caught the bus” to, perhaps, the dog that caught the bus and then learned how to drive and maintain it. Somewhere in the middle of those final throes of old-guard Falcons will be an ever-increasing cadence of Block 5 launches and re-launches, likely including the first manifest-necessitated reuse of a Block 5 booster sometime this summer.
- Falcon 9 B1045 shows off its own Fairing 2.0 ahead of the launch of TESS. (NASA)
- Chuck Bennett captured Mr Steven conducting high-speed maneuvers with its new, yellow net installed, May 17. (Charles Bennett/@chuckbennett)
- Not nearly enough net, as it turned out. (Pauline Acalin, May 2018)
Meanwhile, despite the sealed fate of the rocket’s booster, tomorrow’s launch will debut fairing-catcher Mr Steven’s new and improved net. With the introduction of an upgraded net and what can only be described as back-to-back days of relentless ocean-going practice over the last two weeks, it’s entirely possible that Iridium-6/GRACE-FO will be able to lay claim to the first successful catch of a payload fairing following an orbital rocket launch. Fingers crossed.
Follow the mission live on SpaceX’s webcast at 12:30 pm PST on Tuesday, May 22, and make sure to check back at Teslarati over the course of the week as photographer Pauline Acalin covers Mr Steven’s return to Port of San Pedro.
Follow us for live updates, behind-the-scenes sneak peeks, and a sea of beautiful photos from our East and West coast photographers.
Teslarati – Instagram – Twitter
Tom Cross – Twitter
Pauline Acalin – Twitter
Eric Ralph – Twitter
Elon Musk
Elon Musk confirms SpaceX is not developing a phone
Despite many recent rumors and various reports, Elon Musk confirmed today that SpaceX is not developing a phone based on Starlink, not once, but twice.
Today’s report from Reuters cited people familiar with the matter and stated internal discussions have seen SpaceX executives mulling the idea of building a mobile device that would connect directly to the Starlink satellite constellation.
Musk did state in late January that SpaceX developing a phone was “not out of the question at some point.” However, He also said it would have to be a major difference from current phones, and would be optimized “purely for running max performance/watt neural nets.”
Not out of the question at some point. It would be a very different device than current phones. Optimized purely for running max performance/watt neural nets.
— Elon Musk (@elonmusk) January 30, 2026
While Musk said it was not out of the question “at some point,” that does not mean it is currently a project SpaceX is working on. The CEO reaffirmed this point twice on X this afternoon.
Musk said, “Reuters lies relentlessly,” in one post. In the next, he explicitly stated, “We are not developing a phone.”
Reuters lies relentlessly
— Elon Musk (@elonmusk) February 5, 2026
We are not developing a phone
— Elon Musk (@elonmusk) February 5, 2026
Musk has basically always maintained that SpaceX has too many things going on, denying that a phone would be in the realm of upcoming projects. There are too many things in the works for Musk’s space exploration company, most notably the recent merger with xAI.
SpaceX officially acquires xAI, merging rockets with AI expertise
A Starlink phone would be an excellent idea, especially considering that SpaceX operates 9,500 satellites, serving over 9 million users worldwide. 650 of those satellites are dedicated to the company’s direct-to-device initiative, which provides cellular coverage on a global scale.
Nevertheless, there is the potential that the Starlink phone eventually become a project SpaceX works on. However, it is not currently in the scope of what the company needs to develop, so things are more focused on that as of right now.
News
Tesla adds notable improvement to Dashcam feature
Tesla has added a notable improvement to its Dashcam feature after complaints from owners have pushed the company to make a drastic change.
Perhaps one of the biggest frustrations that Tesla owners have communicated regarding the Dashcam feature is the lack of ability to retain any more than 60 minutes of driving footage before it is overwritten.
It does not matter what size USB jump drive is plugged into the vehicle. 60 minutes is all it will hold until new footage takes over the old. This can cause some issues, especially if you were saving an impressive clip of Full Self-Driving or an incident on the road, which could be lost if new footage was recorded.
This has now been changed, as Tesla has shown in the Release Notes for an upcoming Software Update in China. It will likely expand to the U.S. market in the coming weeks, and was first noticed by NotaTeslaApp.
The release notes state:
“Dashcam Dynamic Recording Duration – The dashcam dynamically adjusts the recording duration based on the available storage capacity of the connected USB drive. For example, with a 128 GB USB drive, the maximum recording duration is approximately 3 hours; with a 1 TB or larger USB drive, it can reach up to 24 hours. This ensures that as much video as possible is retained for review before it gets overwritten.”
Tesla Adds Dynamic Recording
Instead of having a 60-minute cap, the new system will now go off the memory in the USB drive. This means with:
- 128 GB Jump Drive – Up to Three Hours of Rolling Footage
- 1TB Jump Drive – Up to 24 Hours of Rolling Footage
This is dependent on the amount of storage available on the jump drive, meaning that if there are other things saved on it, it will take away from the amount of footage that can be retained.
While the feature is just now making its way to employees in China, it will likely be at least several weeks before it makes its way to the U.S., but owners should definitely expect it in the coming months.
It will be a welcome feature, especially as there will now be more customization to the number of clips and their duration that can be stored.
Elon Musk
Will Tesla join the fold? Predicting a triple merger with SpaceX and xAI
With the news of a merger between SpaceX and xAI being confirmed earlier this week by CEO Elon Musk directly, the first moves of an umbrella company that combines all of the serial tech entrepreneur’s companies have been established.
The move aims to combine SpaceX’s prowess in launches with xAI’s expanding vision in artificial intelligence, as Musk has detailed the need for space-based data centers that will require massive amounts of energy to operate.
It has always been in the plans to bring Musk’s companies together under one umbrella.
“My companies are, surprisingly in some ways, trending toward convergence,” Musk said in November. With SpaceX and xAI moving together, many are questioning when Tesla will be next. Analysts believe it is a no-brainer.
SpaceX officially acquires xAI, merging rockets with AI expertise
Dan Ives of Wedbush wrote in a note earlier this week that there is a “growing chance” Tesla could be merged in some form with the new conglomeration over the next 12 to 18 months.
“In our view, there is a growing chance that Tesla will eventually be merged in some form into SpaceX/xAI over time. The viewis this growing AI ecosystem will focus on Space and Earth together… and Musk will look to combine forces,” Ives said.
Let’s take a look at the potential.
The Case for Synergies – Building the Ultimate AI Ecosystem
A triple merger would create a unified “Musk Trinity,” blending Tesla’s physical AI with Robotaxi, Optimus, and Full Self-Driving, SpaceX’s orbital infrastructure through Starlink and potential space-based computer, and xAI’s advanced models, including Grok.
This could accelerate real-world AI applications, more specifically, ones like using satellite networks for global autonomy, or even powering massive training through solar-optimized orbital data centers.
The FCC welcomes and now seeks comment on the SpaceX application for Orbital Data Centers.
The proposed system would serve as a first step towards becoming a Kardashev II-level civilization and serve other purposes, according to the applicant. pic.twitter.com/TDnUPuz9w7
— Brendan Carr (@BrendanCarrFCC) February 4, 2026
This would position the entity, which could ultimately be labeled “X,” as a leader in multiplanetary AI-native tech.
It would impact every level of Musk’s AI-based vision for the future, from passenger use to complex AI training models.
Financial and Structural Incentives — and Risks
xAI’s high cash burn rate is now backed by SpaceX’s massive valuation boost, and Tesla joining the merger would help the company gain access to private funding channels, avoiding dilution in a public-heavy structure.
The deal makes sense from a capital standpoint, as it is an advantage for each company in its own specific way, addressing specific needs.
Because xAI is spending money at an accelerating rate due to its massive compute needs, SpaceX provides a bit of a “lifeline” by redirecting its growing cash flows toward AI ambitions without the need for constant external fundraising.
Additionally, Tesla’s recent $2 billion investment in xAI also ties in, as its own heavy CapEx for Dojo supercomputers, Robotaxis, and Optimus could potentially be streamlined.
Musk’s stake in Tesla and SpaceX, after the xAI merger, is also uneven. His ownership in Tesla equates to about 13 percent, only increasing as he achieves each tranche of his most recent compensation package. Meanwhile, he owns about 43 percent of the private SpaceX.
A triple merger between the three companies could boost his ownership in the combined entity to around 26 percent. This would give Musk what he wants: stronger voting power and alignment across his ventures.
It could also be a potential facilitator in private-to-public transitions, as a reverse merger structure to take SpaceX public indirectly via Tesla could be used. This avoids any IPO scrutiny while accessing the public markets’ liquidity.
Timeline and Triggers for a Public Announcement
As previously mentioned, Ives believes a 12-18 month timeline is realistic, fueled by Musk’s repeated hints at convergence between his three companies. Additionally, the recent xAI investment by Tesla only points toward the increased potential for a conglomeration.
Of course, there is speculation that the merger could happen in the shorter term, before June 30 of this year, which is a legitimate possibility. While this possibility exists but remains at low probability, especially when driven by rapid AI/space momentum, longer horizons, like 2027 or later, allow for key milestones like Tesla’s Robotaxi rollout and Cybercab ramp-up, Optimus scaling, or regulatory clarity under a favorable administration.

Credit: Grok Imagine
The sequencing matters: SpaceX-xAI merger as “step one” toward a unified stack, with a potential SpaceX IPO setting a valuation benchmark before any Tesla tie-up.
Full triple convergence could follow if synergies prove out.
Prediction markets are also a reasonable thing to look at, just to get an idea of where people are putting their money. Polymarket, for example, sits at between a 12 and 24 percent chance that a Tesla-SpaceX merger is officially announced before June 30, 2026.
Looking Ahead
The SpaceX-xAI merger is not your typical corporate shuffle. Instead, it’s the clearest signal yet that Musk is architecting a unified “Muskonomy” where AI, space infrastructure, and real-world robotics converge to solve humanity’s biggest challenges.
Yet the path is fraught with execution risks that could turn this visionary upside into a major value trap. Valuation mismatches remain at the forefront of this skepticism: Tesla’s public multiples are unlike any company ever, with many believing they are “stretched.” On the other hand, SpaceX-xAI’s private “marked-to-muth” pricing hinges on unproven synergies and lofty projects, especially orbital data centers and all of the things Musk and Co. will have to figure out along the way.
Ultimately, the entire thing relies on a high-conviction bet on Musk’s ability to execute at scale. The bullish case is transformative: a vertically integrated AI-space-robotics giant accelerates humanity toward abundance and multi-planetary civilization faster than any siloed company could.












