Connect with us

News

SpaceX’s Starship rocket sails through first “flight-like” fueling test

Starship has almost certainly become the heaviest rocket in history after a successful full-stack wet dress rehearsal test. (SpaceX)

Published

on

SpaceX’s fully-assembled Starship rocket appears to have sailed through a major wet dress rehearsal test on the first attempt.

With the completion of that test, the next-generation SpaceX rocket has taken a big step toward its first orbital launch attempt. Starship measures around 120 meters (~394 ft) tall and 9 meters (~30 ft) wide, making it the largest rocket ever assembled. It’s designed to launch more than 100 metric tons (~220,000 lb) to low Earth orbit (LEO) in a fully-reusable configuration. At liftoff, Starship’s 33 Raptor engines will produce up to 7590 tons (16.7M lbf) of thrust, making it more powerful than any rocket in history by a large margin.

And on Monday, January 23rd, Starship likely became the heaviest rocket ever after SpaceX fully loaded the vehicle with propellant. Surprising most viewers, SpaceX also appeared to complete the complex test associated with that milestone without running into any major issues.

The apparent success is surprising because it simply hasn’t been SpaceX’s approach of choice while developing Starship. Since SpaceX began assembling Starhopper in an empty Texas field in 2018, the Starship program has been almost exclusively managed to prioritize speed and expect failures. The company almost always preferred to build, test, and learn from minimum-viable-product prototypes as quickly as possible, even if that meant that failures were guaranteed.

Because SpaceX expected failures, it learned from them and always had another prototype ready to carry the torch forward. Starship prototypes rarely completed ground or flight tests on the first try, as SpaceX was simultaneously learning – often catastrophically – how to test and operate those vehicles. The culmination of that failure-as-an-option strategy was a series of seven suborbital Starship tests – two short hops of identical prototypes and five launch and landing attempts of five more advanced prototypes between August 2020 and May 2021. On the fifth attempt, after four failures, a full-scale Starship successfully launched to 12.5 kilometers (~41,000 ft), shut off its engines, fell back to Earth, reignited its engines, flipped around, and landed in one piece.

Advertisement
-->

By all appearances, the campaign was the ultimate corroboration of SpaceX’s development strategy. In the second half of 2022, however, SpaceX decided to dramatically change the Starship program’s approach to risk management and systems engineering. Starship testing has become exceptionally cautious over the last several months, as a result.

From fail-fast to slow-and-steady

There is a small chance SpaceX simply got lucky, but Starship’s first fully-assembled wet dress rehearsal test appears to indicate that that caution has paid off. Combined, both stages of the rocket – Ship 24 and Booster 7 – collectively completed dozens of separate proof tests and static fires since mid-2022. They also made it through several far more limited tests while stacked.

Having cautiously characterized each prototype about as well as it possibly could, SpaceX finally pulled the trigger on January 23rd. After hours of conditioning the Starbase, Texas orbital launch site’s giant tank farm, SpaceX opened the floodgates and loaded Ship 24 and Booster 7 with up to 4860 tons (~10.7M lbs) of cryogenic liquid oxygen and liquid methane propellant in about 90 minutes. Once fully loaded, the combined weight of the rocket and propellant likely exceeded 5000 tons (~11M lbs), making Starship the heaviest rocket in history. The next heaviest rockets ever built, Saturn V and N-1, weighed around 2800 tons (~6.2M lbs) fully loaded.

SpaceX was also able to drain Starship and return its propellant to the pad’s ground storage tanks about four hours after filling the rocket.

“Flight-like” testing

The company later confirmed that the test was a “full flight-like wet dress rehearsal,” as suspected, and noted that data gathered from it would “help verify a full launch countdown sequence, as well as the performance of Starship and the orbital pad for flight-like operations.” Parts of the test visible from unaffiliated webcasts like NASASpaceflight’s seemed to confirm as much. Shortly after Starship was fully loaded, for example, SpaceX activated the orbital launch mount’s fire extinguisher system, seemingly practicing the moments before the rocket would otherwise ignite its engines and take flight.

Advertisement
-->

At no point during the wet dress rehearsal did SpaceX appear to enter any kind of hold or abort, indicating that the rocket’s systems were all working well enough together to smoothly complete it on the first try. The only mildly concerning behavior visible during the multi-hour test came shortly after Starship was topped off. Booster 7 opened one of its methane tank gas vents to relieve pressure and instead appeared to vent liquid methane, producing a flammable cloud thousands of feet long. More likely than not, the Super Heavy was slightly overfilled, and the liquid vent was an intentional response to that error. The cloud of methane thankfully did not find an ignition source, and Starship went on to finish the test as planned.

Booster 7’s accidental liquid methane vent was without a doubt the largest vent in Starbase history.

SpaceX has a lot of work left to prepare Ship 24 and Booster 7 for Starship’s first orbital launch attempt. Booster 7 must still complete one or several more static fires, during which it could become the most powerful rocket ever tested. To reduce risk, SpaceX will likely remove Ship 24 while testing Super Heavy, and reassemble the rocket only if Booster 7 passes its tests. SpaceX also needs to repair the pad after static fire testing and work with the Federal Aviation Administration (FAA) to finalize Starship’s first orbital launch license.

But after many false positives, Starship’s successful completion of a wet dress rehearsal on the first try has confirmed that the rocket’s orbital launch debut is – for the first time – actually close at hand.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Robotaxi Safety Monitor seems to doze off during Bay Area ride

We won’t try to blame the camera person for the incident, because it clearly is not their fault. But it seems somewhat interesting that they did not try to wake the driver up and potentially contact Tesla immediately to alert them of the situation.

Published

on

Credit: u/ohmichael on Reddit

A Tesla Robotaxi Safety Monitor appeared to doze off during a ride in the California Bay Area, almost ironically proving the need for autonomous vehicles.

The instance was captured on camera and posted to Reddit in the r/sanfrancisco subreddit by u/ohmichael. They wrote that they have used Tesla’s ride-hailing service in the Bay Area in the past and had pleasant experiences.

However, this one was slightly different. They wrote:

“I took a Tesla Robotaxi in SF just over a week ago. I have used the service a few times before and it has always been great. I actually felt safer than in a regular rideshare.

This time was different. The safety driver literally fell asleep at least three times during the ride. Each time the car’s pay attention safety alert went off and the beeping is what woke him back up.

I reported it through the app to the Robotaxi support team and told them I had videos, but I never got a response.

I held off on posting anything because I wanted to give Tesla a chance to respond privately. It has been more than a week now and this feels like a serious issue for other riders too.

Has anyone else seen this happen?”

Advertisement

-->

My Tesla Robotaxi “safety” driver fell asleep
byu/ohmichael insanfrancisco

The driver eventually woke up after prompts from the vehicle, but it is pretty alarming to see someone like this while they’re ultimately responsible for what happens with the ride.

We won’t try to blame the camera person for the incident, because it clearly is not their fault. But it seems somewhat interesting that they did not try to wake the driver up and potentially contact Tesla immediately to alert them of the situation.

They should have probably left the vehicle immediately.

Tesla’s ride-hailing service in the Bay Area differs from the one that is currently active in Austin, Texas, due to local regulations. In Austin, there is no Safety Monitor in the driver’s seat unless the route requires the highway.

Tesla plans to remove the Safety Monitors in Austin by the end of the year.

Continue Reading

News

Tesla opens Robotaxi access to everyone — but there’s one catch

Published

on

Credit: Tesla

Tesla has officially opened Robotaxi access to everyone and everyone, but there is one catch: you have to have an iPhone.

Tesla’s Robotaxi service in Austin and its ride-hailing service in the Bay Area were both officially launched to the public today, giving anyone using the iOS platform the ability to simply download the app and utilize it for a ride in either of those locations.

It has been in operation for several months: it launched in Austin in late June and in the Bay Area about a month later. In Austin, there is nobody in the driver’s seat unless the route takes you on the freeway.

In the Bay Area, there is someone in the driver’s seat at all times.

The platform was initially launched to those who were specifically invited to Austin to try it out.

Tesla confirms Robotaxi is heading to five new cities in the U.S.

Slowly, Tesla launched the platform to more people, hoping to expand the number of rides and get more valuable data on its performance in both regions to help local regulatory agencies relax some of the constraints that were placed on it.

Additionally, Tesla had its own in-house restrictions, like the presence of Safety Monitors in the vehicles. However, CEO Elon Musk has maintained that these monitors were present for safety reasons specifically, but revealed the plan was to remove them by the end of the year.

Now, Tesla is opening up Robotaxi to anyone who wants to try it, as many people reported today that they were able to access the app and immediately fetch a ride if they were in the area.

We also confirmed it ourselves, as it was shown that we could grab a ride in the Bay Area if we wanted to:

The launch of a more public Robotaxi network that allows anyone to access it seems to be a serious move of confidence by Tesla, as it is no longer confining the service to influencers who are handpicked by the company.

In the coming weeks, we expect Tesla to then rid these vehicles of the Safety Monitors as Musk predicted. If it can come through on that by the end of the year, the six-month period where Tesla went from launching Robotaxi to enabling driverless rides is incredibly impressive.

Continue Reading

News

Tesla analyst sees Full Self-Driving adoption rates skyrocketing: here’s why

“You’ll see increased adoption as people are exposed to it. I’ve been behind the wheel of several of these and the different iterations of FSD, and it is getting better and better. It’s something when people experience it, they will be much more comfortable utilizing FSD and paying for it.”

Published

on

tesla interior operating on full self driving
Credit: TESLARATI

Tesla analyst Stephen Gengaro of Stifel sees Full Self-Driving adoption rates skyrocketing, and he believes more and more people will commit to paying for the full suite or the subscription service after they try it.

Full Self-Driving is Tesla’s Level 2 advanced driver assistance suite (ADAS), and is one of the most robust on the market. Over time, the suite gets better as the company accumulates data from every mile driven by its fleet of vehicles, which has swelled to over five million cars sold.

The suite features a variety of advanced driving techniques that many others cannot do. It is not your typical Traffic-Aware Cruise Control (TACC) and Lane Keeping ADAS system. Instead, it can handle nearly every possible driving scenario out there.

It still requires the driver to pay attention and ultimately assume responsibility for the vehicle, but their hands are not required to be on the steering wheel.

It is overwhelmingly impressive, and as a personal user of the FSD suite on a daily basis, I have my complaints, but overall, there are very few things it does incorrectly.

Tesla Full Self-Driving (Supervised) v14.1.7 real-world drive and review

Gengaro, who increased his Tesla price target to $508 yesterday, said in an interview with CNBC that adoption rates of FSD will increase over the coming years as more people try it for themselves.

At first, it is tough to feel comfortable with your car literally driving you around. Then, it becomes second nature.

Gengaro said:

“You’ll see increased adoption as people are exposed to it. I’ve been behind the wheel of several of these and the different iterations of FSD, and it is getting better and better. It’s something when people experience it, they will be much more comfortable utilizing FSD and paying for it.”

Tesla Full Self-Driving take rates also have to increase as part of CEO Elon Musk’s recently approved compensation package, as one tranche requires ten million active subscriptions in order to win that portion of the package.

The company also said in the Q3 2025 Earnings Call in October that only 12 percent of the current ownership fleet are paid customers of Full Self-Driving, something the company wants to increase considerably moving forward.

Continue Reading