News
Relativity Space’s first 3D-printed rocket goes vertical for launch debut
Relativity Space’s first 3D-printed Terran 1 rocket has rolled out to the startup’s Florida pad and been raised vertical ahead of its launch debut.
Founded in 2015, the private Los Angeles-based spaceflight company shipped its first complete rocket prototype to Florida in June 2022. Prior to that major milestone, Relativity qualified Terran 1’s orbital second stage at leased facilities located at NASA’s Stennis Space Center in southwest Mississippi, and – alongside a nosecone and interstage – arrived at Cape Canaveral Space Force Station (CCSFS) more or less ready to fly.
The last six months have been almost exclusively dedicated to testing Terran 1’s larger and more powerful first stage (booster) as thoroughly as possible. Instead of building a dedicated booster test stand in Mississippi, Relativity chose to modify Terran 1’s lone LC-16 launch pad for the crucial task. Ultimately, the startup was able to complete a large amount of booster testing on the ground, significantly increasing the odds that Terran 1 will perform as expected when it lifts off for the first time.
The update that's rolling out to the fleet makes full use of the front and rear steering travel to minimize turning circle. In this case a reduction of 1.6 feet just over the air— Wes (@wmorrill3) April 16, 2024
Beginning with cryogenic proofing, propellant loading, ‘spin starts,’ and several shorter static fire tests, Relativity’s first Terran 1 booster test campaign culminated with two long-duration static fires in September 2022. The final 57 and 82-second static fires weren’t quite the “full mission duration” tests Relativity had hoped for, but the company concluded that the data gathered was enough to clear the booster for flight.
According to Ellis, one of the most important insights gained from those tests was into Terran 1’s uncharacteristically complex autogenous pressurization system – unprecedented for such a small rocket. Generally speaking, orbital-class rockets store helium gas in small ultra-high-pressure tanks (COPVs) and use helium to pressurize their propellant tanks as they are drained of propellant. Autogenous pressurization refers to an alternative in which a portion of a rocket’s liquid oxidizer and fuel are turned into hot gas and injected back into their respective tanks to pressurize them.
Helium is extremely expensive and an unrenewable resource. In theory, autogenous pressurization – at the cost of being significantly more complex and finicky – can also reduce the amount of dry mass reserved for tank pressurization. While Terran 1 wasn’t able to complete a full-duration static fire, the tests it did complete showed Relativity that its autogenous pressurization systems are unlikely to be a problem in flight, mostly eliminating a major source of uncertainty.
Following the final 82 or 88-second static fire, Relativity returned Terran 1’s booster to LC-16’s hangar and shifted its focus to fully assembling the two-stage rocket and finishing the launch pad. In early December, the company announced that it had fully assembled the first Terran 1. Days later, the rocket was installed on the pad’s “Transporter Erector.” The T/E responsible for transporting the rocket and raising it vertical, but it also needs to connect the rocket to ground systems (propellant, power, comms, etc.) and hold it down before liftoff.
On or around December 6th, Terran 1 rolled out to the pad and was raised vertical soon after. According to Ellis, all that stands between Terran 1 and its first launch is a short integrated static fire test and a launch license from the Federal Aviation Administration (FAA). It’s impossible to say how long the FAA will take, but it’s likely that Relativity will be technically ready to launch just a handful of weeks from now.
Beyond building a relativity impressive rocket, Relativity’s claim to fame is large-scale 3D printing. The startup says that the first Terran 1 rocket – booster, upper stage, fairing, engines, and all – is 85% 3D-printed by mass and the largest single 3D-printed object ever built. Terran 1 reportedly weighs around 9.3 tons (20,500 lb) empty; will measure around 33 meters (110 ft) tall and 2.3 meters (7.5 ft) wide; and will produce around 90 tons (~200,000 lbf) of thrust at liftoff. The rocket is designed to launch 1.25 tons (~2750 lb) to low Earth orbit for $12 million
News
Elon Musk makes a key Tesla Optimus detail official
“Since we are naming the singular, we will also name the plural, so Optimi it is,” Musk wrote on X.
Tesla CEO Elon Musk just made a key detail about Optimus official. In a post on X, the CEO clarified some key wording about Optimus, which should help the media and the public become more familiar with the humanoid robot.
Elon Musk makes Optimus’ plural term official
Elon Musk posted a number of Optimus-related posts on X this weekend. On Saturday, he stated that Optimus would be the Von Neumann probe, a machine that could eventually be capable of replicating itself. This capability, it seems, would be the key to Tesla achieving Elon Musk’s ambitious Optimus production targets.
Amidst the conversations about Optimus on X, a user of the social media platform asked the CEO what the plural term for the humanoid robot will be. As per Musk, Tesla will be setting the plural term for Optimus since the company also decided on the robot’s singular term. “Since we are naming the singular, we will also name the plural, so Optimi it is,” Musk wrote in his reply on X.
This makes it official. For media outlets such as Teslarati, numerous Optimus bots are now called Optimi. It rolls off the tongue pretty well, too.
Optimi will be a common sight worldwide
While Musk’s comment may seem pretty mundane to some, it is actually very important. Optimus is intended to be Tesla’s highest volume product, with the CEO estimating that the humanoid robot could eventually see annual production rates in the hundreds of millions, perhaps even more. Since Optimi will be a very common sight worldwide, it is good that people can now get used to terms describing the humanoid robot.
During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-Optimi-per-year production line at the Fremont Factory. Giga Texas would get an even bigger Optimus production line, which should be capable of producing tens of millions of Optimi per year.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
