Connect with us

News

Relativity Space’s first 3D-printed rocket goes vertical for launch debut

Published

on

Relativity Space’s first 3D-printed Terran 1 rocket has rolled out to the startup’s Florida pad and been raised vertical ahead of its launch debut.

Founded in 2015, the private Los Angeles-based spaceflight company shipped its first complete rocket prototype to Florida in June 2022. Prior to that major milestone, Relativity qualified Terran 1’s orbital second stage at leased facilities located at NASA’s Stennis Space Center in southwest Mississippi, and – alongside a nosecone and interstage – arrived at Cape Canaveral Space Force Station (CCSFS) more or less ready to fly.

The last six months have been almost exclusively dedicated to testing Terran 1’s larger and more powerful first stage (booster) as thoroughly as possible. Instead of building a dedicated booster test stand in Mississippi, Relativity chose to modify Terran 1’s lone LC-16 launch pad for the crucial task. Ultimately, the startup was able to complete a large amount of booster testing on the ground, significantly increasing the odds that Terran 1 will perform as expected when it lifts off for the first time.

Beginning with cryogenic proofing, propellant loading, ‘spin starts,’ and several shorter static fire tests, Relativity’s first Terran 1 booster test campaign culminated with two long-duration static fires in September 2022. The final 57 and 82-second static fires weren’t quite the “full mission duration” tests Relativity had hoped for, but the company concluded that the data gathered was enough to clear the booster for flight.

According to Ellis, one of the most important insights gained from those tests was into Terran 1’s uncharacteristically complex autogenous pressurization system – unprecedented for such a small rocket. Generally speaking, orbital-class rockets store helium gas in small ultra-high-pressure tanks (COPVs) and use helium to pressurize their propellant tanks as they are drained of propellant. Autogenous pressurization refers to an alternative in which a portion of a rocket’s liquid oxidizer and fuel are turned into hot gas and injected back into their respective tanks to pressurize them.

Advertisement
-->

Helium is extremely expensive and an unrenewable resource. In theory, autogenous pressurization – at the cost of being significantly more complex and finicky – can also reduce the amount of dry mass reserved for tank pressurization. While Terran 1 wasn’t able to complete a full-duration static fire, the tests it did complete showed Relativity that its autogenous pressurization systems are unlikely to be a problem in flight, mostly eliminating a major source of uncertainty.

Following the final 82 or 88-second static fire, Relativity returned Terran 1’s booster to LC-16’s hangar and shifted its focus to fully assembling the two-stage rocket and finishing the launch pad. In early December, the company announced that it had fully assembled the first Terran 1. Days later, the rocket was installed on the pad’s “Transporter Erector.” The T/E responsible for transporting the rocket and raising it vertical, but it also needs to connect the rocket to ground systems (propellant, power, comms, etc.) and hold it down before liftoff.

On or around December 6th, Terran 1 rolled out to the pad and was raised vertical soon after. According to Ellis, all that stands between Terran 1 and its first launch is a short integrated static fire test and a launch license from the Federal Aviation Administration (FAA). It’s impossible to say how long the FAA will take, but it’s likely that Relativity will be technically ready to launch just a handful of weeks from now.

Beyond building a relativity impressive rocket, Relativity’s claim to fame is large-scale 3D printing. The startup says that the first Terran 1 rocket – booster, upper stage, fairing, engines, and all – is 85% 3D-printed by mass and the largest single 3D-printed object ever built. Terran 1 reportedly weighs around 9.3 tons (20,500 lb) empty; will measure around 33 meters (110 ft) tall and 2.3 meters (7.5 ft) wide; and will produce around 90 tons (~200,000 lbf) of thrust at liftoff. The rocket is designed to launch 1.25 tons (~2750 lb) to low Earth orbit for $12 million

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading

News

Tesla FSD (Supervised) is about to go on “widespread” release

In a comment last October, Elon Musk stated that FSD V14.2 is “for widespread use.”

Published

on

Tesla has begun rolling out Full Self-Driving (Supervised) V14.2, and with this, the wide release of the system could very well begin. 

The update introduces a new high-resolution vision encoder, expanded emergency-vehicle handling, smarter routing, new parking options, and more refined driving behavior, among other improvements.

FSD V14.2 improvements

FSD (Supervised) V14.2’s release notes highlight a fully upgraded neural-network vision encoder capable of reading higher-resolution features, giving the system improved awareness of emergency vehicles, road obstacles, and even human gestures. Tesla also expanded its emergency-vehicle protocols, adding controlled pull-overs and yielding behavior for police cars, fire trucks, and ambulances, among others.

A deeper integration of navigation and routing into the vision network now allows the system to respond to blocked roads or detours in real time. The update also enhances decision-making in several complex scenarios, including unprotected turns, lane changes, vehicle cut-ins, and interactions with school buses. All in all, these improvements should help FSD (Supervised) V14.2 perform in a very smooth and comfortable manner.

Elon Musk’s predicted wide release

The significance of V14.2 grows when paired with Elon Musk’s comments from October. While responding to FSD tester AI DRIVR, who praised V14.1.2 for fixing “95% of indecisive lane changes and braking” and who noted that it was time for FSD to go on wide release, Musk stated that “14.2 for widespread use.”

FSD V14 has so far received a substantial amount of positive reviews from Tesla owners, many of whom have stated that the system now drives better than some human drivers as it is confident, cautious, and considerate at the same time. With V14.2 now rolling out, it remains to be seen if the update also makes it to the company’s wide FSD fleet, which is still populated by a large number of HW3 vehicles. 

Advertisement
-->
Continue Reading

News

Tesla FSD V14.2 starts rolling out to initial batch of vehicles

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Published

on

Credit: Grok Imagine

Tesla has begun pushing Full Self-Driving (Supervised) v14.2 to its initial batch of vehicles. The update was initially observed by Tesla owners and veteran FSD users on social media platform X on Friday.

So far, reports of the update have been shared by Model Y owners in California whose vehicles are equipped with the company’s AI4 hardware, though it would not be surprising if more Tesla owners across the country receive the update as well. 

Based on the release notes of the update, key improvements in FSD V14.2 include a revamped neural network for better detection of emergency vehicles, obstacles, and human gestures, as well as options to select arrival spots. 

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Following are the release notes of FSD (Supervised) V14.2, as shared on X by longtime FSD tester Whole Mars Catalog.

Advertisement
-->

Release Notes

2025.38.9.5

Currently Installed

FSD (Supervised) v14.2

Full Self-Driving (Supervised) v14.2 includes:

  • Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances.
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school busses.
  • Improved FSD’s ability to manage system faults and improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
  • Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
  • Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!

Upcoming Improvements:

  • Overall smoothness and sentience
  • Parking spot selection and parking quality
Continue Reading