News
SpaceX preps Texas Starship’s second tank dome for installation in latest milestone
During an August 4th visit to SpaceX’s Boca Chica Starship build site, CEO Elon Musk captured and shared photos showing technicians carefully flipping the second of three propellant tank domes destined for installation inside the company’s South Texas orbital Starship prototype.
This is the latest visible step towards the completion of one of SpaceX’s two “Mk 1” Starships, said by Elon Musk to be the first orbit-capable prototypes. Per recent tweets, either or both of the prototypes – being built concurrently at separate sites in Florida and Texas – could be ready for their first flight tests as early as September or October 2019.
Set to be powered by up to three sea-level (SL) Raptors and three vacuum-optimized Raptors (RVacs), Musk has stated that SpaceX’s first two orbital Starship prototypes will likely begin flight testing with just the three SL engines installed. Recently, the SpaceX CEO did, however, indicate that development of Raptor’s vacuum variant – postponed as of a September 2018 update – had been reprioritized and said that it could actually be ready sooner than later.
Raptor Vacuum will have a significantly larger nozzle compared to the sea level engine it will be based on. According to Musk, RaptorVac will have a nozzle diameter of roughly 2.8m (9.2 ft), while the SL Raptor features a ~1.3m (4.2 ft)-diameter nozzle. With a larger diameter nozzle, a chemical rocket engine can technically generate more thrust and is significantly more efficient due to an increased expansion ratio, meaning the difference in the diameter of the nozzle exit and combustion chamber throat.
In the very simplest sense, this efficiency and thrust increase comes from the fact that a longer nozzle allows the exiting gas (reaction mass) to reach a higher velocity, thus conveying more momentum onto the rocket it is propelling.


Starship’s Raptor engines, of course, use liquid methane as fuel and liquid oxygen as their oxidizer. According to SpaceX, fully fueling a combined Super Heavy and Starship stack will require an incredible ~5000 tons (11 million pounds) of propellant – ~1500 tons for Starship and ~3500 tons for Super Heavy.
To contain such a huge amount of fuel and oxidizer, Starship (and Super Heavy) must effectively be turned into extremely mass-efficient pressure vessels, capable of supporting something like 20 kilograms of propellant with every kilogram of rocket structure.

SpaceX’s installation of bulkheads in the Texas Starship prototype are thus an inherent indication that the rocket is being readied to play the role of a massive, ultra-strong pressure vessel. While sitting vertically, a fueled Starship’s tank domes will be subjected to immense pressures and forces from the sheer weight of the liquid oxygen and methane held above them.
Additionally, the rearmost dome will likely be partially or fully integrated into Starship’s thrust structure, meaning that it will simultaneously be subjected to the thrust of 3-6 Raptors (as much as 600-1200 tons of thrust) and the gravity of 300 metric tons of methane. It’s unclear if SpaceX is planning to reinforce Starship and Super Heavy tank bulkheads with structural add-ons, but it’s safe to assume that some level of reinforcement will be required.


SpaceX CEO Elon Musk’s planned August 24th presentation on Starship and Super Heavy will likely (hopefully) provide some new details on the structure and general design of the company’s advanced, next-generation rocket.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.
