Connect with us

News

Tesla patents novel hood hinge that optimizes pedestrian safety during collisions

The Model X is Tesla's largest vehicle in its current lineup. (Credit: nick.lauer via My Tesla Adventure/Instagram)

Published

on

Tesla’s electric cars are known for being extremely quick, and they are also known for being extremely safe. The Model 3, the company’s most affordable car to date, for example, has aced safety ratings across the globe, earning a 5-Star rating from the NHTSA in the US, the Euro NCAP in Europe, and the ANCAP in Australia. Even the IIHS gave the Tesla Model 3 its highest rating, Top Safety Pick+

But this is Tesla, and the electric car maker is known for being a company that refuses to stay still. Its cars are already quick enough to give passengers serious Gs while launching, yet the company remains hard at work on making them even quicker and more visceral in terms of speed (e.g. the Model S Plaid Powertrain). In the same light, while Teslas are already safe at their current state, it is no surprise that the company remains dedicated to finding ways to make its vehicles even safer, both for passengers in the cabin and for pedestrians on the road.

One such example of this was highlighted in a recently published patent that was simply titled “Hinge Assembly for a Vehicle Hood.” Based on the electric car maker’s discussion, the novel hinge assembly has the potential to protect pedestrians who happen to hit the vehicle’s hood during a collision. Similar systems are in place in vehicles today, though Tesla maintained that conventional designs have lots of areas for improvement. 

A side view of Tesla’s hinge assembly. (Credit: US Patent Office)

“Modern vehicles are mandated by safety standards to protect pedestrians from head-impact injuries, including a scenario in which a pedestrian would contact the vehicle’s hood. To meet these requirements. Current state of the art safety systems are active systems that typically include a sensor system to detect a collision with pedestrian and fire (using a pyrotechnic) an actuator to lift the front hood into a protective position before pedestrian impact. However, such systems may be falsely triggered and can only be used once because the pyrotechnic is not reversible. The pyrotechnic is also expensive, adding to overall cost of the vehicle. Therefore, there is a need for a safety system that overcomes the aforementioned drawbacks.”

Tesla noted in its patent’s description that its hinge assembly includes a body member and a hood member, with the latter being “pivotally coupled with a body member through a pivot pin.” In the event of a collision, a portion of the vehicle’s hood member or body member “deforms such that the hood member or body member disengages from the pivot pin.” This allows Tesla to use the hinge as a passive pedestrian safety system that does not require any additional components such as sensors or controllers. The design outlined in Tesla’s patent is also more practical than the pyrotechnic system used in conventional pedestrian impact safety systems. 

Tesla describes how its hood hinge works in a collision in the following section. 

Advertisement
-->
A side view of Tesla’s shows the hinge assembly being impacted by a pedestrian head. (Credit: US Patent Office)

“FIG. 6 illustrates impact of a headform 602 on hinge assembly 116. Headform 602 represents the head (or portion thereof) of a pedestrian or other living being. As illustrated, when a collision occurs such that headform 602 hits a portion of hood member 108 of vehicle 100 along direction of an axis X-X′, a force is generated. When the force is great enough, the impact force causes hood member 108 to disengage from hinge assembly 116. The impact force typically causes deformation of portion 314 of hood member 108 adjacent to notch 312 such that pivot pin 202 disengages with second opening 304 of hood member 108. In embodiments, the width W of notch 312 is altered to change the impact force at which the hood member 108 disengages from hood member 108. In embodiments the impact force causes deformation of the pivot pin 202 to allow disengagement of hood member 108 from body member 110.

“In an event of collision, hood member 108 may disengage with hinge assembly 116 such that safety standards can be met. Hood member 108 may move down due to impact force and disengagement with hinge assembly 116. To allow movement of hood member 108, sufficient space may be provided by trimming away portions of hood member 108 and body member 110. Advantageously, this would lower weight of components while maintaining the safety standards for vehicle 100.”

Tesla is a carmaker that will likely never stay still. Despite its significant lead in the electric car segment thanks to its vehicles’ batteries and powertrain, Tesla is in a continuous process of improvement. The hood hinge outlined in this patent might be quite simple, but it contributes to the overall safety of Tesla’s lineup of vehicles nonetheless. Such initiatives, if any, further prove that when it comes to safety, no part is too small for innovation — and in the event of a collision, it’s these factors that can make all the difference. 

Tesla’s patent for its hinge assembly could be accessed below. 

Tesla Hood Patent by Simon Alvarez on Scribd

Advertisement
-->

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

News

Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.

Published

on

Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage. 

These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.

FSD mileage milestones

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities. 

City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos. 

Tesla’s data edge

Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own. 

Advertisement
-->

So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.” 

“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X. 

Continue Reading

News

Tesla starts showing how FSD will change lives in Europe

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Published

on

Credit: Grok Imagine

Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options. 

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Officials see real impact on rural residents

Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”

The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.

What the Ministry for Economic Affairs and Transport says

Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents. 

Advertisement
-->

“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe. 

“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post

Continue Reading

News

Tesla China quietly posts Robotaxi-related job listing

Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Published

on

Credit: Tesla

Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China. 

As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Robotaxi-specific role

The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi. 

Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.

China Robotaxi launch

China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.

Advertisement
-->

This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees. 

Continue Reading