

News
US Air Force awards SpaceX $20m contract to support its biggest spy satellites
Slipping beneath the watchful eye of many skilled defense journalists, the government contracting database FPDS.gov indicates that the US Air Force awarded SpaceX more than $20 million in November 2017 to conduct a design study of vertical integration capabilities (VIC). Describing what exactly this means first requires some background.
Vertical whaaaat?
The flood of acronyms and technical terminology that often follow activities of the Federal government should not detract from the significance of this contract award. First and foremost, what exactly is “vertical integration” and why is significant for SpaceX? Not to be confused with more abstract descriptions of corporate organization (vertical integration describes one such style), integration here describes the literal process of attaching satellite and spacecraft payloads to the rockets tasked with ferrying them to orbit.
Likely as a result of its relative simplicity, SpaceX has used a system of horizontal integration for as long as they have been in the business of launching rockets, be it Falcon 1, Falcon 9, or Falcon Heavy. In order to integrate payloads to the rocket horizontally, SpaceX has a number of horizontal integration facilities (HIF) directly beside each of their three launch pads – two in Florida, one in California. After being transported from the company’s Hawthorne, CA rocket factory, Falcon 9 and Heavy boosters, second stages, payload fairings, and other miscellaneous components are all brought into a HIF, where they are craned off of their transporters (a semi-trailer in most cases) and placed on horizontal stands inside the building.
- The large, white crawler underneath Falcon 9 is one of several methods of transportation SpaceX uses. (Instagram /u/robhubar)
- Falcon Heavy is composed of a Falcon 9 upper stage and three Falcon 9-class boosters. (SpaceX)
- The fully-integrated Falcon Heavy rolls out to Pad 39A. For vertical integration, think of this… but vertical. (SpaceX)
While in the HIF, all three main components are eventually attached together (integrated). The booster or first stage (S1) has its landing legs and grid fins installed soon after arrival at the launch site, followed by the mating of the first and second stages. Once these two primary components of the rocket are attached, the entire stack – as the mated vehicle is called – is once again lifted up by cranes inside the facility and placed atop what SpaceX calls the strongback (also known as the Transporter/Launcher/Erector, or TEL). A truly massive steel structure, the TEL is tasked with carrying the rocket to the launch pad, typically a short quarter mile trek from the integration facility. Once it reaches the pad, the TEL uses a powerful hydraulic lift system to rotate itself and its rocket payload from horizontal to vertical. It may look underwhelming, but it serves to remember that a complete Falcon 9/Heavy and its TEL are both considerably more than twice as tall as a basketball court is long.
Falcon Heavy goes vertical pic.twitter.com/uG1k0WISv1
— Elon Musk (@elonmusk) January 5, 2018
Once at the pad, the TEL serves as the rocket’s connection to the pad’s many different ground systems. Crucially, it is tasked with loading the rocket with at least four different fuels, fluids, and gases at a broad range of temperatures, as well as holding the rocket down with giant clamps at its base, providing connection points to transmit a flood of data back to SpaceX launch control. SpaceX’s relatively unique TEL technology is to some extent the foundation of the company’s horizontal integration capabilities – such a practice would be impossible without reliable systems and methods that allow the rocket to be easily transported about and connected to pad systems.
Still, after the Amos-6 mishap in September 2016, which saw a customer’s payload entirely destroyed by a launch vehicle anomaly ahead of a static fire test, SpaceX has since changed their procedures, and now conducts those static fire tests with just the first and second stages – the payload is no longer attached until after the test is completed. For such a significant decrease in risk, the tradeoff of an additional day or so of work is minimal to SpaceX and its customers. Once completed, the rocket is brought horizontal and rolled back into the HIF, where the rocket’s payload fairing is finally attached to the vehicle while technicians ensure that the rocket is in good health after a routine test-ignition of its first stage engines.
- Elon Musk’s Roadster seen before being encapsulated in Falcon Heavy’s massive payload fairing. Below the Tesla is the payload adapter, which connects it to the rocket. (SpaceX)
- Imagine this building-sized fairing traveling approximately TWO MILES PER SECOND. (USAF)
- Finally, the fairing is transported vertically to the HIF, where it can be flipped horizontal and attached to its rocket. (Reddit /u/St-Jed-of-Calumet)
Before being connected to the rocket, the payload itself must also go through its own integration process. Recently demonstrated by a flurry of SpaceX images of Falcon Heavy and its Roadster payload, this involves attaching the payload to a payload adapter, tasked with both securing the payload and fairing to the launch vehicle. Thankfully, the fairing is far smaller than the rocket itself, and this means it can be vertically integrated with the payload and adapter. The final act of joining and bolting together the two fairing halves is known as encapsulation – at which point the payload is now snug inside the fairing and ready for launch. Finally, the integrated payload and fairing are lifted up by cranes, rotated horizontally, and connected to the top of the rocket’s second stage, marking the completion of the integration process.
A different way to integrate
Here lies the point at which the Air Force’s $20m contract with SpaceX comes into play. As a result of certain (highly classified) aspects of some of the largest military satellites, the Department of Defense (DoD) and National Reconnaissance Office (NRO) prefer or sometimes outright require that their payloads remain vertical while being attached to a given rocket. The United Launch Alliance (ULA), SpaceX’s only competition for military launches, almost exclusively utilizes vertical integration for all of their launches, signified by the immense buildings (often themselves capable of rolling on tracks) present at their launch pads. SpaceX has no such capability, at present, and this means that they are effectively prevented from competing for certain military launch contracts – contracts that are often the most demanding and thus lucrative.
It’s clear that the Air Force itself is the main impetus pushing SpaceX to develop vertical integration capabilities, a reasonable continuation of the military’s general desire for assured access to orbit in the event of a vehicle failure grounding flights for the indefinite future. For example, if ULA or SpaceX were to suffer a failure and be forced to ground their rockets for months while investigating the incident, the DoD could choose to transfer time-sensitive payload(s) to the unaffected company for the time being. With vertical integration, this rationale could extend to all military satellites, not simply those that support horizontal integration.
- A hop and a skip south of 39A is SpaceX’s LC-40 pad. (SpaceX)
- Like all SpaceX pads, horizontal integration is a central feature. (SpaceX)
- LC-40’s brand new TEL carries a flight-proven Falcon 9 and Dragon out to the pad. (SpaceX)
Fittingly, the ability to vertically integrate satellites is likely a necessity if SpaceX hopes to derive the greatest possible value from its recently and successfully introduced Falcon Heavy rocket, a highly capable vehicle that the government is likely very interested in. Although the specific Air Force contract blandly labels it a “Design Study,” (FPDS.gov account required) its hefty $21 million award may well be far more money than SpaceX needs to design a solution. In fact, knowing SpaceX’s famous ability to develop and operate technologies with exceptional cost efficiency, it would not be shocking to discover that the intrepid launch company has accepted the design study grant and instead jumped head-first into prototyping, if not the construction of an operational solution. More likely than not, SpaceX would choose to take advantage of the fixed tower (known as the Fixed Service Structure, FSS) currently present at Pad 39A, atop which a crane and work platforms could presumably be attached
Intriguingly, it is a real possibility that Fairing 2.0 – its first launch scheduled to occur as early as Feb. 21 – could have been upgraded in part to support present and future needs of the Department of Defense, among numerous other benefits. Fairing 2.0’s larger size may have even been precipitated by physical requirements for competing for and dealing with the largest spysats operating by the DoD and NRO, although CEO Elon Musk’s characterization of that change as a “slightly larger diameter” could suggest otherwise. On the other hand, Musk’s offhand mention of the possibility of significantly lengthening the payload fairing is likely aimed directly at government customers in both the civil and military spheres of space utilization. Time will tell, and it certainly will not hurt SpaceX or its customers if Fairing 2.0 is also considerably easier to recover and reuse.
Under consideration. We’ve already stretched the upper stage once. Easiest part of the rocket to change. Fairing 2, flying soon, also has a slightly larger diameter. Could make fairing much longer if need be & will if BFR takes longer than expected.
— Elon Musk (@elonmusk) February 12, 2018
Ultimately, it should come as no surprise that SpaceX would attempt to leverage this contract and the DoD’s interest in ways that might also facilitate the development of the company’s futuristic BFR rocket, intended to eventually take humans to the Moon, Mars, and beyond. As shown by both 2016 and 2017 iterations of the vehicle, it appears that SpaceX intends to use vertical integration to attach the spaceship (BFS) to the booster (BFR). While it’s unlikely that this Air Force contract will result in the creation of a vertical integration system that could immediately be applied to or replicated for BFS testing, the experience SpaceX would gain in the process of building something similar for the Air Force would be invaluable and essentially kill two birds with one stone.

While now outdated, SpaceX’s 2016 Mars rocket featured a giant crane used for vertical integration. BFR appears to use the same approach. (SpaceX)
Follow along live as I and launch photographers Tom Cross and Pauline Acalin cover these exciting proceedings live and in person.
Teslarati – Instagram – Twitter
Tom Cross – Twitter
Pauline Acalin – Twitter
Eric Ralph – Twitter
Elon Musk
Elon Musk sends stern warning to Tesla vandals, doubters
Elon Musk sent another warning to vandals that have attacked Tesla for political reasons.

Elon Musk has sent a stern warning to Tesla vandals, doubters, and attackers, who have subjected the company and its owners to political violence through arson and other modes of retaliation.
Over the past few months, Tesla showrooms and vehicles have been hit with numerous attacks from those who have opposed Musk and his political involvement with the Trump Administration. Although Musk has stepped back from his role within government significantly since the start of May, the company is still looked at as a political target.
While the White House has put a clear-cut line on the acts, calling them domestic terrorism and holding those responsible for the damage they have done, there are still numerous and daily instances of keying cars or worse.
Yesterday, Musk continued to send stern warnings to those who oppose Tesla and choose to handle their distaste for the company with violence and vandalism. In a Bloomberg interview at the Qatar Economic Forum, Musk was asked if he took what has happened to Tesla “over the past few months personally.”
Musk replied simply but sternly: “Yes.”
“Did you take what happened to Tesla over the past few months personally?”
“Yes.” –@elonmusk pic.twitter.com/mNbgkpgZEo
— TESLARATI (@Teslarati) May 20, 2025
He went on to say that not only will those who vandalized the company and its products owned by consumers be held to the fullest extent of the law, but also those who fund it.
Musk also said during a CNBC interview yesterday that very few people buy a company’s products because of the CEO’s political beliefs, and many people do not even know where those CEOs stand on various social issues.
Although Musk has gone out of his way to be transparent about his beliefs, he has a valid point. He obviously felt that, because of his influence, he held a duty to uphold American values and protect what he felt was an attack on free speech and human rights.
Disagreeing with Musk and his political stances is totally reasonable, but damaging products that consumers bought from his companies is not impacting him directly. Instead, it is making consumers’ lives more difficult.
News
Tesla Model 3 gets perfect 5-star Euro NCAP safety rating
Tesla prides itself on producing some of the safest vehicles on the road today.

Tesla prides itself on producing some of the safest vehicles on the road today. Based on recent findings from the Euro NCAP, the 2025 Model 3 sedan continues this tradition, with the vehicle earning a 5-star overall safety rating from the agency.
Standout Safety Features
As could be seen on the Euro NCAP’s official website, the 2025 Model 3 achieved an overall score of 90% for Adult Occupants, 93% for Child Occupants, 89% for Vulnerable Road Users, and 87% for Safety Assist. This rating, as per the Euro NCAP, applies to the Model 3 Rear Wheel Drive, Long Range Rear Wheel Drive, Long Range All Wheel Drive, and Performance All Wheel Drive.
The Euro NCAP highlighted a number of the Model 3’s safety features, such as its Active Hood, which automatically lifts during collisions to mitigate injury risks to vulnerable road users, and Automatic Emergency Braking System, which now detects motorcycles through an upgraded algorithm. The Euro NCAP also mentioned the Model 3’s feature that prevents initial door opening if someone is approaching the vehicle’s blind spot.
Standout Safety Features
In a post on its official Tesla Europe & Middle East account, Tesla noted that the company is also introducing new features that make the Model 3 even safer than it is today. These include functions like head-on collision avoidance and crossing traffic AEB, as well as Child Left Alone Detection, among other safety features.
“We also introduced new features to improve Safety Assist functionality even further – like head-on collision avoidance & crossing traffic AEB – to detect & respond to potential hazards faster, helping avoid accidents in the first place.
“Lastly, we released Child Left Alone Detection – if an unattended child is detected, the vehicle will turn on HVAC & alert caregivers via phone app & the vehicle itself (flashing lights/audible alert). Because we’re using novel in-cabin radar sensing, your Tesla is able to distinguish between adult vs child – reduced annoyance to adults, yet critical safety feature for kids,” Tesla wrote in its post on X.
Below is the Euro NCAP’s safety report on the 2025 Tesla Model 3 sedan.
Euroncap 2025 Tesla Model 3 Datasheet by Simon Alvarez on Scribd
Elon Musk
USDOT Secretary visits Tesla Giga Texas, hints at national autonomous vehicle standards
The Transportation Secretary also toured the factory’s production lines and spoke with CEO Elon Musk.

United States Department of Transportation (USDOT) Secretary Sean Duffy recently visited Tesla’s Gigafactory Texas complex, where he toured the factory’s production lines and spoke with CEO Elon Musk. In a video posted following his Giga Texas visit, Duffy noted that he believes there should be a national standard for autonomous vehicles in the United States.
Duffy’s Giga Texas Visit
As could be seen in videos of his Giga Texas visit, the Transportation Secretary seemed to appreciate the work Tesla has been doing to put the United States in the forefront of innovation. “Tesla is one of the many companies helping our country reach new heights. USDOT will be right there all the way to make sure Americans stay safe,” Duffy wrote in a post on X.
He also praised Tesla for its autonomous vehicle program, highlighting that “We need American companies to keep innovating so we can outcompete the rest of the world.”
National Standard
While speaking with Tesla CEO Elon Musk, the Transportation Secretary stated that other autonomous ride-hailing companies have been lobbying for a national standard for self-driving cars. Musk shared the sentiment, stating that “It’d be wonderful for the United States to have a national set of rules for autonomous driving as opposed to 50 independent sets of rules on a state-by-state rules basis.”
Duffy agreed with the CEO’s point, stating that, “You can’t have 50 different rules for 50 different states. You need one standard.” He also noted that the Transportation Department has asked autonomous vehicle companies to submit data. By doing so, the USDOT could develop a standard for the entire United States, allowing self-driving cars to operate in a manner that is natural and safe.
-
News2 weeks ago
Tesla Cybertruck Range Extender gets canceled
-
Elon Musk6 days ago
Tesla seems to have fixed one of Full Self-Driving’s most annoying features
-
Lifestyle2 weeks ago
Anti-Elon Musk group crushes Tesla Model 3 with Sherman tank–with unexpected results
-
News2 weeks ago
Starlink to launch on United Airlines planes by May 15
-
News2 weeks ago
Tesla Semi gets new adoptee in latest sighting
-
News2 weeks ago
Tesla launches its most inexpensive trim of new Model Y
-
News2 weeks ago
US’ base Tesla Model Y has an edge vs Shanghai and Berlin’s entry-level Model Ys
-
News2 weeks ago
Tesla Cybertruck owners get amazing year-long freebie