News
EV adoption spurs updated guidance on parking structure design
As electric vehicles (EVs) become increasingly common on roads around the world, many infrastructural changes will be needed to accommodate them. One example includes the design of parking garages, which some say will require updated fire safety protocols and additional modifications to accommodate the heavy weight of EVs.
The United Kingdom’s Institution of Structural Engineers released a new design guidance for parking garages earlier this year, pointing out a broad range of topics related to the structures, from EV weight, charging access and reduced noise levels to fire safety considerations (via CNBC). The guidance includes suggestions for the design of garages that are multi-story, underground or simply located inside offices or residential buildings.
Perhaps the most pressing topic included in the guidance for parking garages — called multi-story car parks in the U.K. — is the battery hardware used in EVs, which makes them much heavier than internal combustion engine (ICE) vehicles. With increased range models and a wider span of vehicle classes, EV weights will likely continue getting heavier in the future.
“This extra load and the changing fire safety requirements are all considerations not just for new car parks, but for existing structures too,” the institution writes in the report.
According to the group, average vehicle weights have increased from 1.5 metric tons (3,307 pounds) in 1974 to almost 2 metric tons (4,409 pounds) this year. As one example, Tesla’s forthcoming Cybertruck is a stainless steel behemoth, expected to weigh somewhere between 5,000 and 8,000 pounds (2.3 to 3.6 metric tons).
Institution fellow and co-author of the guidance Chris Whapples also notes that some newer EVs are well over 3 metric tons (6,614 pounds).
“The thing to bear in mind is that the ones that cause the damage, if you like, are the heavy vehicles — not the vehicles that are heavier than they were 40 years ago but still within the capacity of the design for car parks,” Whapples explained in an interview with CNBC. “We’re seeing increasing numbers now of SUVs, large executive cars — both fossil-fueled and battery ones — and pickup trucks, which are immensely heavy.”
Whapples details a handful of potential solutions for heavy vehicles, primarily including the need to retrofit older garages with increased structural support, either in specific spots that are determined to be weaker or in their entirety. He also notes that heavy vehicles could stay on ground floors to park, and garages could even screen the weights of cars as they enter.
“If one pickup is significantly overloaded and that car park is weak, that’s a potential disaster waiting to happen,” Whapples added. “We said, as an industry, we must actually check our car parks out and make sure that that’s not going to happen. Because what we want is the public to maintain confidence in our car parks and structural engineers.”
Another top concern detailed in the guidance was improving fire safety protocols in parking garages. Whapples notes that fire risks aren’t exclusive to EVs, adding that gasoline cars can also start fires and make situations more complicated. While EV fires aren’t considered more common than ICE vehicle fires, they can be especially tough to put out, he explains.
“To actually extinguish an EV fire is very, very difficult — particularly if the battery is on fire, because you’ve got so much energy that’s locked in,” Whapples said.
As for potential solutions, Whapples says that sprinkler systems could be an important way to mitigate fire spread, especially in underground car parks.
“Although the sprinkler system will not put out the car fire, it will reduce the rate of spread within the car park, so it’s constantly … ‘quenching’ the car next to the one that’s on fire, and stopping that one from catching fire,” Whapples explains.
All of these and more points will need to be considered ahead of mass EV adoption, both for existing garages and newly built construction. The International Energy Agency (IEA) expects EVs, buses, vans and heavy trucks to reach as many as 145 million units globally by 2030, though government ramp-up efforts could boost that number even more. In 2022, 10 million EVs were sold, including plug-in hybrids and battery-electric vehicles.
The discussions come ahead of Tesla’s initial release of the Cybertruck, which has been widely discussed for its large size, among other details. If many EVs are physically larger than ICE vehicles in the future, it could also require garages to be built with similarly larger parking spaces. Tesla has rolled out some wider and longer parking spaces at its Supercharger stations for the Cybertruck, a move that may be necessary for all parking structures down the road.
What are your thoughts? Let me know at zach@teslarati.com, find me on X at @zacharyvisconti, or send your tips to us at tips@teslarati.com.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.