Connect with us

News

Rocket Lab secretly launches revolutionary satellite and readies for US launch debut

A Rocket Lab Electron is pictured during a wet dress rehearsal at Launch Complex 2. (Rocket Lab)

Published

on

Rocket Lab’s recent flawless return to flight mission nicknamed “I Can’t Believe It’s Not Optical,” set the company up for loftier goals in the latter half of 2020 in a big way. Returning to operation after an in-flight anomaly and subsequent investigation is a massive accomplishment for any launcher. Returning to flight and debuting a pathfinder satellite developed and built in-house, however, solidified Rocket Lab as a full end-to-end space systems company.

For good measure, company founder and chief executive officer, Peter Beck, hopes to round out the year by activating two more Electron launchpads – one of which will be the launcher’s first US-based launch location dedicated to supporting missions for the United States government. Furthermore, following Electron’s seventeenth flight, Rocket Lab hopes to recover the expended first-stage booster – and perhaps more importantly, a mountain of data – as a stepping stone to launch vehicle reuse, a practice pioneered and solely dominated by SpaceX.

A return to flight and an introduction to space systems

Just eight weeks after Electron’s ill-fated thirteenth flight resulting in the loss of a second stage and all customer payloads due to an in-flight electrical anomaly, the next Electron was raised at Launch Complex 1 in Mahia, New Zealand. The fourteenth flight of Electron was a dedicated mission for San Francisco-based information services company, Capella Space. Initially announced, the mission deployed a single microsatellite called “Sequoia” to an approximate 500km circular orbit. Peter Beck later confirmed the mission also secretly featured the successful deployment of Rocket Lab’s first in-house designed and built satellite called “First Light.”

The first in-house developed and built Photon satellite named “First Light” is seen during production prior to launching aboard Electron’s fourteenth flight “I Can’t Believe It’s Not Optical.” (Rocket Lab)

“First Light” is a pathfinder spacecraft based on Rocket Lab’s configurable Photon satellite platform. According to Rocket Lab, it exploits Electron’s Kick Stage, “a nimble but powerful extra stage on Electron designed to circularize payload orbits.” The Kick Stage is designed as a satellite bus with extended capabilities to transition into a satellite – Photon – and performing an independent standalone mission. This is exactly what occurred with “First Light.”

Following the deployment of the “Sequoia” microsatellite, Rocket Lab teams signaled the Kick Stage to enable the standalone Photon capabilities. The command transitioned the spacecraft from a delivery vehicle to a fully functional satellite for the very first time. “First Light” serves as the testbed of many upgraded components including improved management systems for power, thermal, and attitude control.

in a statement provided by Rocket Lab Beck said, “Launching the first Photon mission marks a major turning point for space users – it’s now easier to launch and operate a space mission than it has ever been. When our customers choose a launch-plus-spacecraft mission with Electron and Photon, they immediately eliminate the complexity, risk, and delays associated with having to build their own satellite hardware and procure a separate launch.”

Advertisement
-->

Eventually, the extended Photon capabilities of the Kick Stage will be used to support lunar and interplanetary missions. Beck has gone on record many times stating that Rocket Lab is working toward funding a private mission to Venus with a more robust version of the Photon platform which will deploy a probe to collect information about the Venusian atmosphere.

Counting down to Electron’s first launch from Virginia

On September 17, just two weeks after introducing the world to “First Light,” Rocket Lab announced the final successful Electron wet dress rehearsal at its new Launch Complex 2 (LC-2) at the Mid-Atlantic Regional Spaceport in Wallops Island, Virginia.

The Rocket Lab Electron is pictured during a wet dress rehearsal at Launch Complex 2 at the Mid-Atlantic Regional Spaceport in Wallops Island, Virginia. (Rocket Lab)

The wet dress rehearsal is a standard preparatory practice of raising the rocket vertical on the launchpad, fueling the rocket, and conducting a practice run of all countdown systems and procedures ahead of a launch attempt. This gives launch teams the opportunity to ensure that the rocket is prepared for flight and work out any kinks that may arise ahead of sending the vehicle to space. The countdown is carried down to T-0 and then the vehicle is emptied and safed.

Recently, Rocket Lab was granted a five-year Launch Operator License by the Federal Aviation Administration for the LC-2 site enabling the space systems company to support up to ten Electron missions a year from U.S. soil. The new operator license combined with the one previously procured for Launch Complex 1 in New Zealand allows Rocket Lab to support up to 130 flights of the Electron rocket globally per year.

It was speculated that Electron’s next flight – and the first launch from LC-2 in Virginia – would be the dedicated STP-27RM mission coordinated by the U.S. Space Force’s Space and Missile Systems Center. The first from Virginia will launch a single microsatellite for the Air Force Research Laboratory’s Monolith program. However, the first mission from Virginia is still waiting on a debut date to be identified.

In order for Electron to fly from Virginia, NASA must first certify Electron’s Autonomous Flight Termination System (AFTS) – a protective measure that will automatically destroy the rocket in a safe manner should anything anomalous occur during first stage flight. Electron’s AFTS has already previously flown numerous times from New Zealand. The first flight from Virginia, however, will be the first time a vehicle will launch from the Mid-Atlantic Regional Spaceport with an AFTS.

Advertisement
-->

15 launches, 3 launch pads, and a booster recovery

A number of payload satellites are carefully packaged in Rocket Lab’s Maxwell payload dispensers ahead of an upcoming rideshare mission. (Rocket Lab)

Until then, Rocket Lab is busy preparing for flight fifteen from New Zealand. The recently announced mission, nicknamed “In Focus,” is a rideshare mission featuring nine SuperDove satellites for Planet Labs and one payload for Spaceflight Inc. customer Canon Electronics Inc.

While preparing for the next flight, nearby Rocket Lab is simultaneously wrapping up construction on yet another launch pad. Launch Complex 1B is very much near completion and is expected to be brought online by year’s end. And that’s not the last goal Rocket Lab looks to achieve by the new year.

Beck has time and time again confirmed that the seventeenth flight of Electron will be the first attempt at recovering an expended first stage booster. Eventually, the company will attempt to catch the booster as it is falling back to Earth under the canopy of a parachute by utilizing a helicopter equipped with a specialized grappling hook. The first attempt at recovering a booster is not expected to be quite as elaborate.

Rocket Lab has strengthened the first-stage booster enough to survive the return trip. Until now, the booster has slammed into the ocean water and broken up into small bits. With the assistance of improved software and a deployable parachute, the booster of flight seventeen is expected to softly float back for a gentle water landing with the assistance of “recovery pontoons” as described in a Twitter post by Beck.

As of now, Rocket Lab has not identified any target dates for the upcoming milestones. The company has previously stated that the first mission from Virginia is expected to launch in the third quarter of 2020. Electron’s next flight – “In Focus” – from New Zealand is expected in the first half of October. Rocket Lab will provide future launch and development updates on their social media accounts.

Space Reporter.

Advertisement
Comments

Elon Musk

Tesla locks in Elon Musk’s top problem solver as it enters its most ambitious era

The generous equity award was disclosed by the electric vehicle maker in a recent regulatory filing.

Published

on

Credit: Duke University

Tesla has granted Senior Vice President of Automotive Tom Zhu more than 520,000 stock options, tying a significant portion of his compensation to the company’s long-term performance. 

The generous equity award was disclosed by the electric vehicle maker in a recent regulatory filing.

Tesla secures top talent

According to a Form 4 filing with the U.S. Securities and Exchange Commission, Tom Zhu received 520,021 stock options with an exercise price of $435.80 per share. Since the award will not fully vest until March 5, 2031, Zhu must remain at Tesla for more than five years to realize the award’s full benefit.

Considering that Tesla shares are currently trading at around the $445 to $450 per share level, Zhu will really only see gains in his equity award if Tesla’s stock price sees a notable rise over the years, as noted in a Sina Finance report.

Still, even at today’s prices, Zhu’s stock award is already worth over $230 million. If Tesla reaches the market cap targets set forth in Elon Musk’s 2025 CEO Performance Award, Zhu would become a billionaire from this equity award alone.

Advertisement
-->

Tesla’s problem solver

Zhu joined Tesla in April 2014 and initially led the company’s Supercharger rollout in China. Later that year, he assumed the leadership of Tesla’s China business, where he played a central role in Tesla’s localization efforts, including expanding retail and service networks, and later, overseeing the development of Gigafactory Shanghai.

Zhu’s efforts helped transform China into one of Tesla’s most important markets and production hubs. In 2023, Tesla promoted Zhu to Senior Vice President of Automotive, placing him among the company’s core global executives and expanding his influence beyond China. He has since garnered a reputation as the company’s problem solver, being tapped by Elon Musk to help ramp Giga Texas’s vehicle production. 

With this in mind, Tesla’s recent filing seems to suggest that the company is locking in its top talent as it enters its newest, most ambitious era to date. As could be seen in the targets of Elon Musk’s 2025 pay package, Tesla is now aiming to be the world’s largest company by market cap, and it is aiming to achieve production levels that are unheard of. Zhu’s talents would definitely be of use in this stage of the company’s growth.

Continue Reading

News

Tesla counters Norway’s VAT hike with dedicated consumer bonus

The move follows Tesla Norway’s stunning finish in 2025, where the company saw substantial sales during the final weeks of the year.

Published

on

Credit: Tesla Europe & Middle East/X

Tesla has rolled out a price incentive in Norway, effectively offsetting a notable VAT increase that hit electric vehicle buyers at the start of 2026.

The move follows Tesla Norway’s stunning finish in 2025, where the company saw substantial sales during the final weeks of the year.

A “Tesla bonus”

Once the VAT increase kicked in at the start of 2026, Tesla Norway’s sales cooled almost immediately, as noted in a CarUp report. Tesla’s response was swift, with the electric vehicle maker rolling out what it calls a “Tesla bonus.”

This bonus effectively cuts prices by up to 50,000 kronor across eight model variants. All versions of the Tesla Model Y qualify for the incentive, along with most Tesla Model 3 trims, save for the base entry-level model.

This means that for Tesla Norway’s best-selling vehicles, the bonus effectively restores pricing to pre-VAT levels. This blunts the impact of the new tax and makes Tesla’s vehicle offerings competitive again in Europe’s most EV-saturated market.

Advertisement
-->

Stabilizing demand

In addition to the “Tesla bonus,” the electric car maker is also offering a promotional interest rate for up to three years, with terms varying by model. The incentive applies to orders placed between January 9 and March 31, 2026, with delivery required by the end of the first quarter.

The stakes are high in Norway, where electric vehicles dominate new-car registrations. From the vehicles that were sold in 2025, 96% of new cars sold were fully electric. And from this number, Tesla and its Model Y made their dominance felt. This was highlighted by Geir Inge Stokke, director of OFV, who noted that Tesla was able to achieve its stellar results despite its small vehicle lineup.

“Taking almost 20% market share during a year with record-high new car sales is remarkable in itself. When a brand also achieves such volumes with so few models, it says a lot about both demand and Tesla’s impact on the Norwegian market,” Stokke stated.

Continue Reading

Elon Musk

SpaceX gains favor as Pentagon embraces Musk-style defense reform

The remarks highlighted Musk’s improving relationship with the White House, as well as SpaceX’s growing role in U.S. defense.

Published

on

Credit: @SecWar/X

SpaceX emerged as a clear beneficiary of the Trump administration’s renewed push to accelerate military innovation, as Defense Secretary Pete Hegseth openly praised Elon Musk’s private space enterprise during a visit to the company’s Starbase launch site in Texas. 

The remarks highlighted Musk’s improving relationship with the White House, as well as SpaceX’s growing role in U.S. defense.

Hegseth embraces Elon Musk’s pace

Speaking at SpaceX’s Starbase facility in Brownsville, Texas, Hegseth criticized what he described as a “risk-averse culture” among traditional defense contractors and called for faster innovation modeled after Musk’s approach. He confirmed that the Department of Defense plans to integrate Musk’s Grok AI platform into Pentagon systems, which is part of the administration’s efforts to make the U.S. military an “AI-first warfighting force.”

Hegseth stated that the Pentagon intends to deploy AI models across both classified and unclassified networks, signaling a willingness to push past earlier efforts to limit military use of artificial intelligence. His comments aligned closely with President Donald Trump’s recent call for a $500 billion increase in defense spending, Bloomberg News noted. Trump has also warned major contractors that slower production and shareholder-focused practices could put future contracts at risk.

While Hegseth criticized legacy defense firms, SpaceX was held up as an example of how aggressive timelines, vertical integration, and iterative development could reshape defense strategies. “We need to be blunt here; we can no longer afford to wait a decade for our legacy prime contractors to deliver a perfect system. Winning requires a new playbook. Elon wrote it with his algorithm: question every requirement, delete the dumb ones and accelerate like hell,” Hegseth said.

Advertisement
-->

SpaceX’s expanding defense role comes into focus

SpaceX has become one of the U.S. government’s most important aerospace partners. The company holds roughly $4 billion in NASA contracts to develop Starship into a lunar lander, while also serving as a key launch provider for sensitive national security payloads using its Falcon 9 and Falcon Heavy rockets.

During the visit, Musk highlighted that his ambitions extend beyond defense contracts, reiterating long-term goals of interplanetary travel and eventual exploration beyond the solar system. Still, the optics of the event reinforced how closely SpaceX’s capabilities now align with U.S. strategic priorities.

The appearance also marked another step in Musk’s political rehabilitation after a public falling-out with the White House last year. Since leaving his role leading the Department of Government Efficiency, Musk has gradually reengaged with the administration, reconnecting with U.S. President Donald Trump during slain conservative activist Charlie Kirk’s tribute and attending events at the White House. Trump’s also recently suggested that Starlink could help restore internet access in Iran.

Continue Reading