In the last 24 hours, SpaceX’s fleet of rocket recovery ships has had to dramatically change course to dodge a tropical storm, weather that has partially delayed the company’s next Starlink satellite launch.
Previously scheduled to launch no earlier than (NET) ~4 am EDT on May 17th, less than 24 hours after the United Launch Alliance (ULA) planned to launch a US military spaceplane, the ULA launch was delayed by weather at the last second, pushing SpaceX’s Starlink launch to May 18th. Nine hours later, SpaceX announced that it had delayed its eighth Starlink launch another ~24 hours to avoid impacts from a tropical depression developing where the company’s rocket recovery fleet was assembling in the Atlantic Ocean.
As of now, Starlink-7 is scheduled to lift off on an exceptionally flight-proven Falcon 9 rocket at 3:10 am EDT (07:10 UTC) on Tuesday, May 19th. It will be the eighth time SpaceX has performed a dedicated launch of 60 Starlink satellites since May 2019 and the 7th launch of Starlink v1.0 spacecraft since November 2019, a little over six months.
Falcon 9 Block 5 booster B1049 will be supporting the mission, set to be the rocket’s fifth launch since it debuted in September 2018 and second launch this year. Most recently, B1049 successfully launched SpaceX’s third Starlink mission (Starlink-2) on January 7th.
B1049 will be the second SpaceX booster to attempt a fifth orbital-class launch. Designed to fly no fewer than 10 times each, five flights marks the halfway point on the path to that ambitious design goal, itself just a preliminary target short of an even more ambitious goal of 100 flights per booster (with regular overhauls). It remains to be seen if SpaceX and CEO Elon Musk continue to aim for that ~100-launch target for Falcon 9 and Heavy boosters but with multiple boosters already nearing their fifth flights, it’s a question that will have to be answered sooner than later.
Unfortunately, during SpaceX’s inaugural fifth flight of Falcon 9 booster B1048, the rocket stage suffered a critical engine failure and emergency shutdown shortly before main engine cutoff and booster separation. B1048’s engine failure also prevented the booster from successfully landing, resulting in its destruction. SpaceX ultimately concluded that improper refurbishment – not an issue with the hardware itself – was the cause of the failure.
As a result, B1049’s fifth launch is much more important than it might otherwise be. If successful, it will help demonstrate that nothing (aside from shoddy quality assurance) should hold back Falcon reusability from SpaceX’s design goals. If a similar failure occurs, however, it could quickly start to look like Falcon 9 Block 5 has hit a wall with respect to reusability, potentially capping each booster and five flights per life. Either way, SpaceX’s Starlink-7 mission will be a crucial mission for the company – up next is Crew Dragon’s inaugural NASA astronaut launch.