News

SpaceX highlights Crew Dragon SuperDraco thrusters as explosion investigation nears end

SpaceX published a highlight reel of Crew Dragon's SuperDraco thruster testing on September 12th. (SpaceX)

SpaceX has published a highlight reel touting “over 700 tests” of Crew Dragon’s SuperDraco abort thrusters at the same time as the company is about to close a failure investigation into a Dragon capsule’s April explosion, pinned primarily on abort-related hardware.

According to a September 6th meeting of NASA’s Aerospace Safety Advisory Panel (ASAP), SpaceX has nearly completed the ‘fault tree’ of Crew Dragon’s explosion, a term used to describe the process of analyzing telemetry and ruling out all possible failure modes. Once that tree is complete, the investigation can be finalized and SpaceX can implement all hardware and software changes needed to prevent similar failures from reoccurring. For the time being, this means that a 2019 launch of SpaceX’s inaugural crewed Dragon is almost certainly not in the cards, although early 2020 is still looking promising.

On April 20th, SpaceX was extremely quick to acknowledge that an anomaly had occurred during a planned static fire of flight-proven Crew Dragon capsule C201, recovered just one month prior after a flawless orbital launch debut. Soon after, an extremely low-quality video of a livestream of the static fire attempt was leaked, revealing that the capsule suffered a catastrophic explosion just moments before the ignition of its eight SuperDraco thrusters.

Incredibly, one of Crew Dragon C201’s SuperDraco ‘powerpacks’ (a pair of engines) was not only recovered intact after the explosion but static-fired at SpaceX’s McGregor, TX test facilities. A bit less than three months after the explosion, SpaceX and NASA officials hosted a press conference in July 2019 to discuss preliminary results from their joint Crew Dragon failure investigation. Some work remained to rule out other possibilities but NASA and SpaceX were confident enough to conclude that an exotic interaction between SuperDraco propellant and a leaky titanium valve likely triggered the explosion.

According to ASAP, SpaceX and NASA still have work to do before the investigation can be concluded, describing it as “nearly complete”. Additionally, the ASAP meeting continued what feels like an increasingly myopic focus on SpaceX’s carbon overwrapped pressure vessels (COPVs), used to store high-pressure helium on Falcon 9 and Heavy. COPVs have been partial causes of both of Falcon 9’s two operational failures, explaining NASA’s apparent prioritization of its certification.

Unspecified issues with parachutes were also raised for both Commercial Crew spacecraft, continuing a years-long trend of parachutes and COPVs taking up the majority of ASAP’s attention in public meetings. Boeing and SpaceX continue to test their parachute systems, both well into dozens of distinct tests after something like two years of concerted attempts to satisfy NASA requirements.

SpaceX has already demonstrated a successful orbital launch, reentry, parachute deployment, and splashdown during Crew Dragon’s March 2019 Demo-1 launch, as well as 18 successful Cargo Dragon parachute recoveries in the last seven years. Cargo Dragon did suffer one anomalous splashdown in 2018, but its partially redundant set of chutes still permitted a gentle and intact recovery.

Nevertheless, it appears that SpaceX and Boeing will have to continue performing parachute tests for the indefinite future. Boeing’s next milestone – an uncrewed orbital test flight (OTF) comparable to SpaceX’s Demo-1 mission – is expected to launch no earlier than October 28th according to Russian space industry sources. SpaceX’s next Crew Dragon milestone will be the spacecraft’s in-flight abort (IFA) test, scheduled no earlier than November 2019.

Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.

SpaceX highlights Crew Dragon SuperDraco thrusters as explosion investigation nears end
To Top