News
Tesla Roadster’s ‘SpaceX package’ with rocket thrusters could actually work
This weekend proved to be a fruitful one for Elon Musk’s Twitter followers and fans of the next-generation Tesla Roadster, as the billionaire entrepreneur discussed, in honest-to-goodness seriousness, how the electric car maker would utilize SpaceX technology to make the upcoming all-electric supercar an absolute monster on wheels. Needless to say, there was quite a lot to take in.
Musk started off his Twitter discussion on the next-generation Roadster by stating that the car will feature ~10 rocket thrusters that are “arranged seamlessly around (the) car.” Musk further noted that the thrusters would “dramatically” improve acceleration, braking, and cornering, to the point that the Roadster would be able to fly — a reaffirmation of his previous statement referring to the vehicle having the capability to fly “short hops.”
Musk noted that Tesla would be using SpaceX’s Composite Overwrapped Pressure Vessel (COPV), a container consisting of a thin, non-structural liner wrapped with a structural fiber composite. COPVs are designed to hold a fluid under pressure, and are used by SpaceX’s first-stage rocket boosters during re-entry and landing. Musk further explained the use of SpaceX’s technology in later tweets.
SpaceX option package for new Tesla Roadster will include ~10 small rocket thrusters arranged seamlessly around car. These rocket engines dramatically improve acceleration, top speed, braking & cornering. Maybe they will even allow a Tesla to fly …
— Elon Musk (@elonmusk) June 9, 2018
While the idea of using rocket propulsion to enhance the performance of an all-electric supercar might seem to be well into the realms of science fiction, using COPVs for the next-gen Roadster is actually pretty feasible, at least from a technical standpoint. SpaceX’s COPVs have operating pressures of around 350 bars (5,000 psi) and too powerful for a land vehicle. If Tesla installs a similar version of SpaceX’s upper stage thrusters that are used in guiding rockets, rear-mounted devices could store just enough compressed air to provide Tesla’s next-gen Roadster an additional boost in acceleration for a short duration.
Note, gas contained would be ultra high pressure air in a SpaceX rocket COPV bottle. The air exiting the thrusters would immediately be replenished whenever vehicle pack power draw allowed operation of the air pump, which is most of the time.
— Elon Musk (@elonmusk) June 10, 2018
Rocket thrusters placed in front of the vehicle that provides thrust opposite of the Roadster’s direction of travel, at least in concept, could help the electric car’s braking capability, while thrusters placed along each side of the vehicle can help in cornering by providing lateral force. In order to accomplish this, however, Tesla would have to carefully balance the weight of components from the upgraded SpaceX package – Musk noted that the vehicle would sacrifice its rear seats from the standard 2+ 2 configuration to accommodate the additional hardware – with output from the rocket thrusters to maximize the vehicle’s performance. Onboard electric air pumps would repressurize the space-grade containers when they were depleted, making for repeat fun, at least in a theoretical sense. Musk also stated that SpaceX COPVs that will be used for the next-generation Roadster will be durable, and be “literally bulletproof.”
Exactly. Total energy stored even in ultra compressed air is low vs battery, but power output is insane. The composite overwrapped pressure vessel (COPV) is most advanced ever made. It’s what SpaceX is qualifying for NASA crewed missions. Extremely robust — literally bulletproof.
— Elon Musk (@elonmusk) June 10, 2018
Overall, Musk reiterated that the next-generation Tesla Roadster is designed to be the best car in the industry when it gets released. During his tweetstorm, Musk mentioned that with the all-electric supercar, Tesla is attempting to beat ICE vehicles on “every performance metric;” thus transferring the “halo crown effect” gas cars have as the top speed standards in the automotive market.
New details about Tesla’s next-generation Roadster have been released by Elon Musk lately. The SpaceX option for the vehicle was announced during the 2018 Annual Shareholder Meeting, and not long after that, Musk also revealed that the vehicle would feature an “Augmented Mode” designed to “enhance human driving ability,” thereby providing assistance to drivers who would be operating the insanely powerful supercar.
During the unveiling of the next-generation Tesla Roadster, Elon Musk noted that the purpose of the all-electric supercar is to give a “hardcore smackdown” to gasoline-powered cars. The specs of the vehicle that were unveiled then, which are representative of the all-electric supercar’s base trim, are already record-breaking, including a 0-60 mph time of 1.9 seconds, a quarter-mile time of 8.9 seconds, a top speed of over 250 mph, 620 miles of range thanks to a 200 kWh battery, and 10,000 Nm of torque. With the Roadster’s SpaceX option, the all-electric supercar could very well establish a new class of vehicles that lie beyond the hypercar echelon.
Elon Musk
Elon Musk’s Boring Company opens Vegas Loop’s newest station
The Fontainebleau is the latest resort on the Las Vegas Strip to embrace the tunneling startup’s underground transportation system.
Elon Musk’s tunneling startup, The Boring Company, has welcomed its newest Vegas Loop station at the Fontainebleau Las Vegas.
The Fontainebleau is the latest resort on the Las Vegas Strip to embrace the tunneling startup’s underground transportation system.
Fontainebleau Loop station
The new Vegas Loop station is located on level V-1 of the Fontainebleau’s south valet area, as noted in a report from the Las Vegas Review-Journal. According to the resort, guests will be able to travel free of charge to the stations serving the Las Vegas Convention Center, as well as to Loop stations in Encore and Westgate.
The Fontainebleau station connects to the Riviera Station, which is located in the northwest parking lot of the convention center’s West Hall. From there, passengers will be able to access the greater Vegas Loop.
Vegas Loop expansion
In December, The Boring Company began offering Vegas Loop rides to and from Harry Reid International Airport. Those trips include a limited above-ground segment, following approval from the Nevada Transportation Authority to allow surface street travel tied to Loop operations.
Under the approval, airport rides are limited to no more than four miles of surface street travel, and each trip must include a tunnel segment. The Vegas Loop currently includes more than 10 miles of tunnels. From this number, about four miles of tunnels are operational.
The Boring Company President Steve Davis previously told the Review-Journal that the University Center Loop segment, which is currently under construction, is expected to open in the first quarter of 2026. That extension would allow Loop vehicles to travel beneath Paradise Road between the convention center and the airport, with a planned station located just north of Tropicana Avenue.
News
Tesla leases new 108k-sq ft R&D facility near Fremont Factory
The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.
Tesla has expanded its footprint near its Fremont Factory by leasing a 108,000-square-foot R&D facility in the East Bay.
The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.
A new Fremont lease
Tesla will occupy the entire building at 45401 Research Ave. in Fremont, as per real estate services firm Colliers. The transaction stands as the second-largest R&D lease of the fourth quarter, trailing only a roughly 115,000-square-foot transaction by Figure AI in San Jose.
As noted in a Silicon Valley Business Journal report, Tesla’s new Fremont lease was completed with landlord Lincoln Property Co., which owns the facility. Colliers stated that Tesla’s Fremont expansion reflects continued demand from established technology companies that are seeking space for engineering, testing, and specialized manufacturing.
Tesla has not disclosed which of its business units will be occupying the building, though Colliers has described the property as suitable for office and R&D functions. Tesla has not issued a comment about its new Fremont lease as of writing.
AI investments
Silicon Valley remains a key region for automakers as vehicles increasingly rely on software, artificial intelligence, and advanced electronics. Erin Keating, senior director of economics and industry insights at Cox Automotive, has stated that Tesla is among the most aggressive auto companies when it comes to software-driven vehicle development.
Other automakers have also expanded their presence in the area. Rivian operates an autonomy and core technology hub in Palo Alto, while GM maintains an AI center of excellence in Mountain View. Toyota is also relocating its software and autonomy unit to a newly upgraded property in Santa Clara.
Despite these expansions, Colliers has noted that Silicon Valley posted nearly 444,000 square feet of net occupancy losses in Q4 2025, pushing overall vacancy to 11.2%.
News
Tesla winter weather test: How long does it take to melt 8 inches of snow?
In Pennsylvania, we got between 10 and 12 inches of snow over the weekend as a nasty Winter storm ripped through a large portion of the country, bringing snow to some areas and nasty ice storms to others.
I have had a Model Y Performance for the week courtesy of Tesla, which got the car to me last Monday. Today was my last full day with it before I take it back to my local showroom, and with all the accumulation on it, I decided to run a cool little experiment: How long would it take for Tesla’s Defrost feature to melt 8 inches of snow?
Tesla’s Defrost feature is one of the best and most underrated that the car has in its arsenal. While every car out there has a defrost setting, Tesla’s can be activated through the Smartphone App and is one of the better-performing systems in my opinion.
It has come in handy a lot through the Fall and Winter, helping clear up my windshield more efficiently while also clearing up more of the front glass than other cars I’ve owned.
The test was simple: don’t touch any of the ice or snow with my ice scraper, and let the car do all the work, no matter how long it took. Of course, it would be quicker to just clear the ice off manually, but I really wanted to see how long it would take.
Tesla Model Y heat pump takes on Model S resistive heating in defrosting showdown
Observations
I started this test at around 10:30 a.m. It was still pretty cloudy and cold out, and I knew the latter portion of the test would get some help from the Sun as it was expected to come out around noon, maybe a little bit after.
I cranked it up and set my iPhone up on a tripod, and activated the Time Lapse feature in the Camera settings.
The rest of the test was sitting and waiting.
It didn’t take long to see some difference. In fact, by the 20-minute mark, there was some notable melting of snow and ice along the sides of the windshield near the A Pillar.
However, this test was not one that was “efficient” in any manner; it took about three hours and 40 minutes to get the snow to a point where I would feel comfortable driving out in public. In no way would I do this normally; I simply wanted to see how it would do with a massive accumulation of snow.
It did well, but in the future, I’ll stick to clearing it off manually and using the Defrost setting for clearing up some ice before the gym in the morning.
Check out the video of the test below:
❄️ How long will it take for the Tesla Model Y Performance to defrost and melt ONE FOOT of snow after a blizzard?
Let’s find out: pic.twitter.com/Zmfeveap1x
— TESLARATI (@Teslarati) January 26, 2026