

News
Drone successfully flies human organ transplant between hospitals
For the first time, a human organ has been successfully transported between medical facilities by a drone. A team of scientists from the University of Maryland Baltimore used a research-qualified donor kidney as a test subject to shuffle back and forth on a remotely piloted hexacopter, testing the organ for changes throughout 14 flights. Its longest journey was 3 miles at a maximum speed of 40 mph, the duration and distance of which were suitable for demonstrating transportation between inner city hospitals.
Currently, organs have few options for transportation, and the process for moving them involves a network of couriers and commercial aircraft that are dependent on schedules and traffic patterns. When normal commercial schedules aren’t available, the cost of private charter transportation can be prohibitive. Even when cost isn’t a factor, the time involved in the process altogether can prevent a transplant from being completed as organs are very sensitive cargo.
To best ensure a successful transplant procedure, organs must be moved quickly between the donor and the recipient. The amount of time an organ can spend chilled after removal and when it’s warmed up and the blood supply restored, called cold ischemia time (CIT), is very limited. Some organs, such as the heart, only have as few as 4 hours available to be transported before they are no longer eligible for transplant. Up against airplane flight availability and traffic patterns, an improvement like what drone transportation could provide might have life saving implications.
Shortening CIT times with faster organ transportation could also expand the availability of organs across regions currently out of range. According to the Journal article detailing the results of the drone test, the national average CIT is 16-18 hours. With a fast enough drone, even a cross-country trip could be cut down to around 8 hours, potentially expanding the availability of organs such as the liver and pancreas to such a distance. Regional expansion would be especially helpful for harder to reach areas where CITs are routinely longer than 30 hours for kidneys, the recommended maximum CIT being about 24 hours.
The research scientists used a specially designed device for this experiment called a HOMAL (Human Organ Monitoring and Quality Assurance Apparatus for Long-Distance Travel) to measure temperature, barometric pressure, altitude, vibration, and location via GPS during the organ’s transportation. Once the project was complete, the kidney’s temperature and travel environment were shown to have remained stable. Further biopsies also did not reveal any flight-related impact on its structural integrity.
The drone used in this research was a commercially available DJI Matrice 600 Pro Hexacopter, the specifications of which include 6 vertically oriented motors, around 20 minutes of flight time, a maximum flight speed of 40 mph, and a payload capability of about 13 pounds. For long-distance organ transport, upgraded equipment would be necessary as well as revised regulations on drone activity. A mandatory line of sight is required for drone pilots under current laws, thus precluding any major travel distances. Also, as with most aircraft, drones would also be subject to weather constraints.
Despite the limitations of drone transportation, the team involved in this study remain optimistic as technological developments progress. The fastest drone on record can reach a speed of about 160 mph, and 22 pound payloads are already possible on commercially available craft. As these and other developments continue to expand and overcome other challenges, so could their potential use for medical transportation. As improvements also expand the regional reach of transplants to potential donor recipients, the medical benefits of the technology could prompt revision of current drone restrictions.
Elon Musk
Elon Musk shares unbelievable Starship Flight 10 landing feat
Flight 10’s Starship upper stage demonstrated impressive accuracy when it came to its target landing zone.

SpaceX CEO Elon Musk recently shared an insane feat accomplished by Starship’s upper stage during its tenth test flight.
Despite the challenges it faced during its return trip to Earth, Flight 10’s Starship upper stage demonstrated impressive accuracy when it came to its target landing zone.
Against the odds
Musk’s update was shared on social media platform X. In a conversation about Starship upper stage’s return to Earth, Musk revealed that the upper stage splashed down just 3 meters (under 10 feet) from its intended target. Considering the size of the Starship upper stage and the ocean itself, achieving this accuracy was nothing short of insane.
Starship Flight 10 was a success as both the Super Heavy booster and Ship upper stage completed all their mission objectives. However, videos and images released by SpaceX showed the upper stage’s heat shield scorched golden-brown and parts of its aft skirt visibly missing. The flaps and other surfaces also bore signs of heavy stress from reentry.
SpaceX highlighted this in a post on X: “Starship made it through reentry with intentionally missing tiles, completed maneuvers to intentionally stress its flaps, had visible damage to its aft skirt and flaps, and still executed a flip and landing burn that placed it approximately 3 meters from its targeted splashdown point,” SpaceX noted.
A key milestone
The result stands in stark contrast to Starship’s earlier test flights this year, when all three prior upper-stage flights in 2025 ended in premature breakup before splashdown. Flight 10 not only marked the first successful splashdown of the year for the Starship upper stage, but it also delivered near-perfect precision despite its battered state, according to a Space.com report.
For SpaceX, this success is a critical proof point in developing a fully reusable launch system. A spacecraft capable of surviving severe reentry conditions and still landing within meters of its target underscores the robustness needed for future missions, including orbital payload deliveries and, eventually, landings on the Moon and Mars.
News
New Tesla Model Y Performance launches from Giga Berlin
The vehicle is produced at Gigafactory Berlin and is available to order now in Europe and the Middle East.

It took some time, but the new Tesla Model Y Performance is finally here. The new Model Y Performance features a blend of aerodynamic improvements, upgraded interior comforts, and high range enabled by new battery cells.
The updated Model Y Performance is produced at Gigafactory Berlin and is available to order now in Europe and the Middle East. First deliveries are expected in 1-2 months.
Key Model Y Improvements
The new Model Y Performance sharpens the vehicle’s design and driving dynamics while adding subtle interior refinements. The revised variant now delivers 0–60 mph in 3.3 seconds, slightly quicker than its predecessor’s 3.5 seconds, while offering an EPA-estimated 308 miles of range, just about 1% less than the non-performance Dual Motor All Wheel Drive variant. Top speed is listed at 155 mph.
The exterior of the new Model Y Performance features new front and rear fascias, along with a carbon fiber spoiler designed for greater downforce and reduced drag. Staggered wheels and tires provide improved steering precision and grip, while high-performance brakes offer enhanced pedal feel and better heat management. The ride is supported by adaptive suspension that adjusts damping based on road conditions, paired with unique drive modes tailored for high-speed performance. Ground clearance is listed at 6.1 inches, and weight is listed at 2,033 kilograms (4,482 pounds).
Tech and Interior
Inside, Tesla has added carbon fiber decor, expanded ambient lighting in the footwells and door pockets, and upgraded seating. The first-row sport seats now include power recline, power tilt, heating, ventilation, and powered thigh extensions for added support during cornering. Rear passengers receive perforated heated seats with power recline. A new 16-inch QHD center touchscreen anchors the cabin’s technology suite.
Additional upgrades include eight exterior cameras, with the refreshed design introducing a new forward-facing unit. The high-density battery pack also boosts charge capacity but also helps maintain range despite the Performance model’s added power output.
Elon Musk
Elon Musk reveals when SpaceX will perform first-ever Starship catch
“Starship catch is probably flight 13 to 15, depending on how well V3 flights go,” Musk said.

Elon Musk revealed when SpaceX would perform the first-ever catch attempt of Starship, its massive rocket that will one day take life to other planets.
On Tuesday, Starship aced its tenth test flight as SpaceX was able to complete each of its mission objectives, including a splashdown of the Super Heavy Booster in the Gulf, the deployment of eight Starlink simulators, and another splashdown of the ship in the Indian Ocean.
It was the first launch that featured a payload deployment:
SpaceX Starship Flight 10 was so successful, it’s breaking the anti-Musk narrative
SpaceX was transparent that it would not attempt to catch the Super Heavy Booster, something it has done on three previous occasions: Flight 5 on October 13, 2024, Flight 7 on January 16, and Flight 8 on March 6.
This time, it was not attempting to do so. However, there are bigger plans for the future, and Musk detailed them in a recent post on X, where he discussed SpaceX’s plans to catch Starship, which would be a monumental accomplishment.
Musk said the most likely opportunities for SpaceX to catch Starship itself would be Flight 13, Flight 14, and Flight 15, but it depends on “how well the V3 flights go.”
The Starship launched with Flight 10 was a V2, which is the same size as the subsequent V3 rocket but has a smaller payload-to-orbit rating and is less powerful in terms of initial thrust and booster thrust. Musk said there is only one more V2 rocket left to launch.
Starship catch is probably flight 13 to 15, depending on how well V3 flights go
— Elon Musk (@elonmusk) August 27, 2025
V3 will be the version flown through 2026, as V4, which will be the most capable Starship build SpaceX manufactures, is likely to be the first company ship to carry humans to space.
Musk said that SpaceX planned to “hopefully” attempt a catch of Starship in 2025. However, it appears that this will likely be pushed back to 2026 due to timing.
SpaceX will take Starship catch one step further very soon, Elon Musk confirms
SpaceX would need to launch the 11th and 12th test flights by the end of the year in order to get to Musk’s expected first catch attempt of Flight 13. It’s not unheard of, but the company will need to accelerate its launch rate as it has only had three test flights this year.
-
Elon Musk2 days ago
SpaceX Starship Flight 10 was so successful, it’s breaking the anti-Musk narrative
-
Elon Musk20 hours ago
Elon Musk reveals when SpaceX will perform first-ever Starship catch
-
News2 days ago
Tesla appears to have teased a long-awaited Model Y trim for a Friday launch
-
News5 days ago
Tesla makes big change to encourage Full Self-Driving purchases
-
News2 days ago
Tesla Semi earns strong reviews from veteran truckers
-
News24 hours ago
Tesla launches Full Self-Driving in a new region
-
News2 days ago
Tesla China working overtime to deliver Model Y L as quickly as possible
-
News1 day ago
Tesla AI6 chips will start sample production at surprising Samsung site